2) Apr 2025 - Theory of Computation - Week 15

$$P := DTIME (n^{k})$$

 $NP := NTIME (n^{k})$
Thm: DTIME ($t(n)$) \subseteq NTIME ($t(n)$) \subseteq DSPACE ($t(n)$)
 $valuese \ t: \ N \rightarrow N$
 $exp := \bigcup DTIME (2^{n^{k}})$
 $k > D$

a language $A \leq p B$ if $\exists a poly-time$ computable function f s.t. x e A ⇔ f(a) ∈ B <u>Thm</u>: if $A \leq \rho B$ and $B \in P$ then $A \in P$. <u>Thm:</u> If $A \leq p B$ and $B \in NP$ Then $A \in NP$

Boolean formula We say E is a boolean formula, over $\{\chi_1, \ldots, \chi_n\}$ if $i \rangle E = \chi_i$, $i \in [n]$ or $i \rangle E = \xi_1 \vee \xi_2 / \xi_1 \wedge \xi_2$ where E_1 , ξ_2 are boolean formula $\psi(\chi_1, \chi_2, \ldots, \chi_6) = ((\chi_1 \vee \chi_1) \wedge \overline{\chi_3}) \vee (\overline{\chi_1} \wedge (\chi_5 \vee \chi_6))$

For SAT, $|\mathcal{Z}| = |\mathcal{X}|$ $\mathcal{M}\left(\langle \langle \psi \rangle , \mathcal{H}_{1} = \psi_{1}, \mathcal{H}_{2} = \psi_{2}, \ldots \right)$ Z = P \Rightarrow if b satisfies $\langle \psi \rangle$ then M accepts else reject. Pef^n k-clique = complete graph on k vertices. Q. Given a graph G = (V, E) and an integer k Decide if \exists a k-clique in G? (n) choices (k) (not polynomial)

23 Apr 2025 SAT := { < \v > | \v is a satisfiable boolean formula } Cook - Levin Thm: SAT is NP - complete. ENP is NP-hard relatively casy to prove

, NP complete 3 SAT := { $\langle \psi \rangle$ | ψ is a satisfiable 3-CNF formula } k - CNF := CNF where every clause contains ≤ k literals <u>k-clique</u> := { < G, k > | G is undirected simple graph that has a clique of size k z

Thm: k-clique is NP-complete ~~ c NP @ previous class Proof: It suffices to reduce a known NP-hard problem in poly-time to k-clique. 3 SAT ______ K- clique $x \in 3$ SAT $\iff f(x) \in k$ -clique $\psi \in 3-CNF \xrightarrow{f} f(\psi) = (G, k)$

Total no. of vertices in $G_1 = no.$ of literals (w) multiplicity) - no edges b/w vertices of the same clause. - no edge blw xi and Ti all other edges are present. φ satisfiable \Rightarrow G has a clique of size k. Claim 1: form a clique all clauses evaluate to 1 ot least one literal = 1 / k = # of choose any one literal from each clause clauses

Thm: DHAMPATH is NP-complete

DHAMPATH := $\{\langle G \rangle | G \text{ is a directed graph that contains}$ a hamiltonian path }

A hamiltonian path is a simple path that visits every vertex.

Thm: 3SAT \leq_{p} DHAMPATH

a $3-CNF \notin \frac{f}{\longrightarrow}$ a directed graph G

 $V \in 3$ SAT \iff G \in DHAMPATH

 $\frac{Proof}{for} = (\chi_1 \vee \overline{\chi_2} \vee \chi_3) \wedge \cdots$ $for every variable \quad \chi_i \in V$ construct the following graph

Any impostant problem you want to solve will likely be NP-complete

-> heuristics, approximations

 \rightarrow Quantum Computing course.