

for one TM, TM := set of all turing machines valid encodings if Z is fixed, 1Q1, 121, 171 of Is TM countable 2  $\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}$ OR Finite Size to Is there a way to enumerate all describe TM turing machines? Claim: TM is countable For every TM (Q, Z, 厂, S, qo, gaccept, Greject)  $\downarrow$ encode as a binary string



Set of all languages,  $\mathcal{L} = 2^{\Xi^*}$  over  $\Xi^*$  $= \{ L \mid L \subseteq \mathbb{Z}^* \}$  $\mathcal{L} \longrightarrow$  uncountable  $\downarrow$   $\longrightarrow$  There is some language not  $\mathcal{T}M \longrightarrow$  countable  $\downarrow$   $\longrightarrow$  recognizable by a TM. Given: <M> an encoding of a TM. and an input x for M. Output : Does M accept x ?



## $MP := \{ \langle M, n \rangle \mid M \text{ accepts } n \}$

language (membership problem)

MP is r.e (by virtue of M')

Q: Is MP decidable / recursive?

No  $\rightarrow$  prove by contradiction.

 $\frac{Proof}{Suppose} \quad MP \text{ is decidable} \implies \exists a \text{ halling} \quad TM \quad T_1$ s.t. M decides MP.





