19 Mar 2025 - Theory of Computation - Week 11 Turing Machines finite 6 С 6 С С a a control a state q a storage tape (infinite) a tape head that can read/write and move left or right (one cell at a time) - accept or reject by entering Gauept / Gniject halting state

$$a$$
 o
 1
 o
 $\hat{1}$
 q_0
 $(q_1, \hat{0}, \hat{R})$
 (q_1, \dots)
 (q_1, \dots)
 (q_1, \dots)
 $(q_n, \hat{1}, \hat{R})$
 q_1
 $(q_1, 0, \hat{R})$
 $(q_2, \hat{1}, \hat{L})$
 (q_1, \dots, \hat{L})
 (q_1, \dots, \hat{L})
 (q_1, \dots, \hat{L})
 $(q_2, \hat{1}, \hat{R})$
 q_1
 $(q_2, 0, \hat{L})$
 (q_1, \dots, \hat{L})
 (q_1, \dots, \hat{L})
 $(q_2, \hat{1}, \hat{L})$
 $(q_2, \hat{1}, \hat{L})$
 q_4
 q_7
 q_7
 (q_4, \dots)
 (q_7, \dots)
 (q_7, \dots)
 $(q_4, \hat{1}, \hat{R})$
 q_4
 q_7
 q_7
 (q_4, \dots)
 (q_7, \dots)
 (q_7, \dots)
 $(q_4, \hat{1}, \hat{R})$
 q_4
 q_7
 q_7
 (q_4, \dots)
 (q_7, \dots)
 (q_7, \dots)
 $(q_4, \hat{1}, \hat{R})$
 q_4
 q_7
 q_7
 $(q_6, \hat{0}, \hat{1}, \hat{1})$
 $\hat{1}$
 $\hat{1}$
 $\hat{1}$
 $\hat{1}$
 q_4
 q_7
 $\hat{0}$
 $\hat{0}$
 $\hat{0}$
 $\hat{1}$
 $\hat{1}$

26 Mar 2025

• Last class notes

Variants of TM

- Multitape TM -> equivalent
- Non-deterministic TM
- Two-way infinite tape TM -> equivalent? -> prove equivalent to multitape
- Offline TM $\Box \Box \Box c a b c d$ $\Box \Box \Box c a b c d$ $\Box \Box c a b c d$

->	Another v	lersion	, each cell registers	has (?)				
->	RAM moo	del	that ca add ope	n do bo subtract sation	<i>i</i> sic			
->	Enumerator	Enumeration	machines	$\rightarrow da$	pes not	have in	put	
	K	ðørk tape			pe			
	Qu	utput tape	#	¢		#		
	at cert	ain point	it keeps	printing	orit a	string)	xe≥*	

$$(\Longrightarrow) ket S be a TM recognizing L$$

$$M: \begin{cases} generate all inputs \in \mathbb{Z}^* \\ Run S m n \\ For some input \\ print n if S accepts \\ S may not halt \\ S may not halt \\ S may not halt \\ Reep an upper bound on \\ number of operations \\ Solution For i = 1, 2, ... \\ Run S for i steps on $x_2, ..., n_i$.
Run S for i steps on $x_2, ..., n_i$.
Run S for i steps on $x_2, ..., n_i$.$$

is regular, then is a recursive? IF L Q2: DFA -> never get stuck in E-transition because not in DFA loops . Yes CFL -> CFG in CNF form $Q1 : \longrightarrow$ implement CKY algorithm \rightarrow taught earlier, probably

Q3 If L is recursive, then is I recursive?

Yes, Swap Gaccept and Greject for M that

accepts L.

Q4 If L is r.e. then is I r.e. too?

Swapping won't work -> thery can be many f-> won't be accepted cases of looping f accepted in either

L E r.e but not recursive If Qh I e re then L is recursive ->= L E r.e does not always mean • Le re. -> Note: For now we are interested in solving yes/ w questions, and we want a recursive TM retursive \iff decidable

Given an integer n ; decide if n is prime?

Lprime = 2 p | prime p 3

x & Lprime?

Undecidable 😂 not recursive

Detour: Cardinality of Sets

We say that A and B have same size if $\exists a f: A \rightarrow B$ sit f is one-one

bijective.

-> works for both finite and infinite sets

Ex: $N = \{1, 2, ..., \}$ $Z = \{..., -2, -1, 0, 1, ..., \}$

n i

$Q: \mathbb{N}$ vs. $2^{\mathbb{N}}$ or $\mathcal{P}(\mathbb{N})$

 $T \neq S_j$ for any j because if $j \in S_j$ then $j \notin T$ of w $j \in T$. Doubt: Construction of T takes as time It's not about time, it's about existence.