24 Feb 2025 - Theory of Computation - Week 08

Recap: Pumping Lemma for CFLs Let A be a CFL. Then $\exists k > 0$ st $\forall s \in A \exists s =$ uvursuppersu

Proof idea: Assume CFL has a grammar in the Chomsky-Normal form. Let G be a CFG in CNF for A $\searrow = (V, \Xi, P, S)$

Contrapositive: If depth $\leq h \Rightarrow$ length of derived string $\leq 2^{h}$

 $v_{\mathcal{X}} \neq \varepsilon \longrightarrow$ The grammar is in CNF $|v_{\mathcal{W}}\mathcal{X}| \leq k \longrightarrow$ start from bottom of the parse tree.

E.g:
$$A = \{ O^n | n^n | n \ge O \}$$
. Prove that A is not a CFL.

ProofProofbycontradiction:AssumethatAisaCFLThisimplies \exists l > 0s:t \forall $s \in A$ of $|s| \ge l$ \exists s=uoroxys:t \forall $s \in A$ of $|s| \ge l$ \exists s=uoroxys:t \forall $s \in A$ of|s|i>vvvvvvvi>vvvvvvi>vvvvvi>vvvvv

Choose a string $\alpha \in A$ of sufficiently large length $(|\alpha| > l)$ We need to show that for all subdivisions $\alpha = uvvvy$ $\exists i > 0$ such that $uv^ivv^iy \notin A$

Choo	se	α	Ξ	0 ^ℓ 1	e 2 ^e									
Clea	ly	œ	e f	ł	and		α) =	3l	≥ l					
	U													
		1		1		}		ł		•				
		u			v	h	y		n		y			
		α =	0 ^l	1 ^e 2 ^e										
	•	VWX	≦	l :	lef	tmest	sym	bol	0 0	and	rightmost	2		
					ઈો	multar	neously	/ ๆ	øt p	ossible	2			

eg:
$$B = \{ 1, 310 \mid 10 \in \{0, 1\}^{*} \}$$

Assume B is a CFL Choose a good
 \cdots same \cdots string to disprove
 $\alpha = 0^{l} 1 0^{l} 1$
 \rightarrow can be punfed $0^{l} 1 0^{l} 1$
 not a good choice.
 $\alpha = 0^{l} 1^{l} 0^{l} 1^{l} \cdots$ similar cases.

Prove that A and B are CFL -> use concatenation properties Complement Given L a CFL, what about I.? $\overline{A} \cup \overline{B} = A \cap B$ If $\overline{A}, \overline{B} \longrightarrow CFL \longrightarrow A \cap B CFL \implies \Leftarrow$ Given a CFG and a string \rightarrow determine if Compilers he constated by CFG \rightarrow Wednesday -> Problems - Wednesday Exam: focus more on Regular Languages

26 Feb 2025 Given a CFG $G = (V, \Sigma, P, S)$ decide (i) empty 2 Input size : encoding of G (ii) finiteness 2 empty -> never end in terminals $A \rightarrow a$ $\downarrow \rightarrow Not$ empty $B \rightarrow Aa$ \downarrow rule $A \rightarrow \alpha$ Marked variables that has a B → ACa → Mark B iteratively marked marked

Fix a CFG G = (V, Z, P, S) \longrightarrow Grammar is not an input <u>Problem</u>: Given $x \in \Sigma^*$, decide if $x \in L(G)$? $\begin{vmatrix} A & \rightarrow BC \\ A & \rightarrow a \end{vmatrix}$ Input size : |x| assume CNF Length of the derivation $\leq 2|\varkappa| - 1$ 0(1x1) 2

Set of all vars that can produce a fixed string set of vars that can derive rij Vij := Nij := Ni Ni+1 ··· Xi+j-1 $l \leq j, i \leq n$ (String of length j starting at i) Vir ~~ ~~ (first step) Vij = Ni Ni+1 --- Ni+j-1 All possible ways of breaking it (j-1) ponts into two parts

