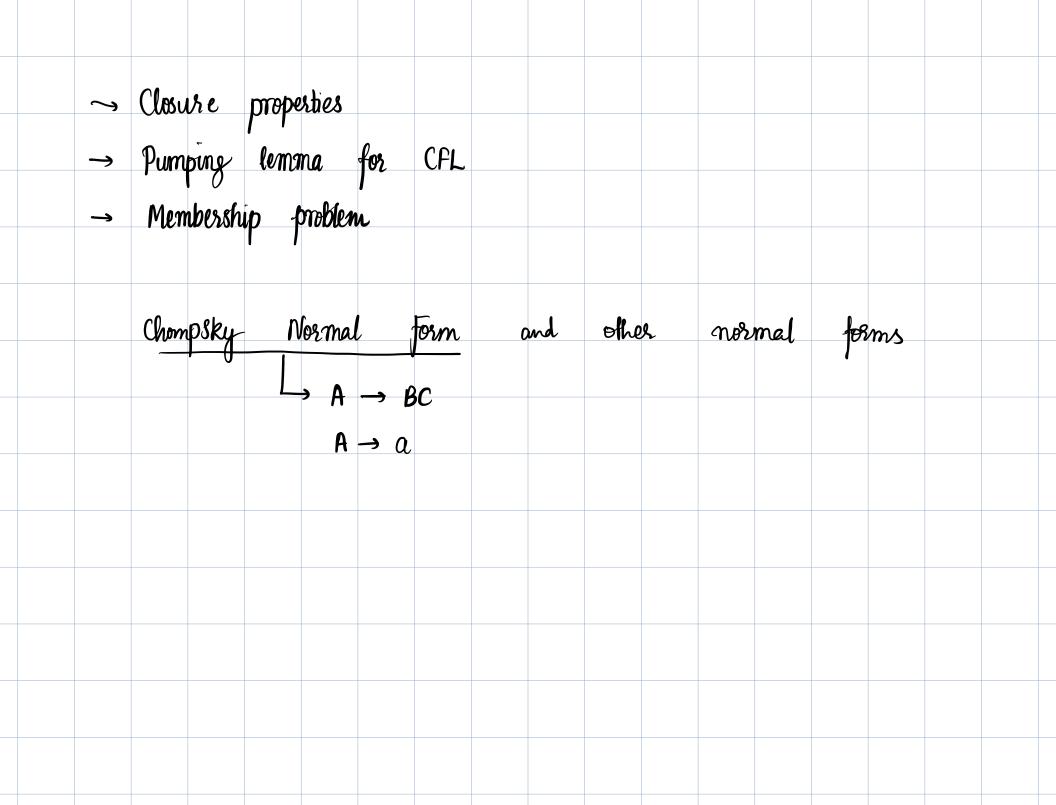
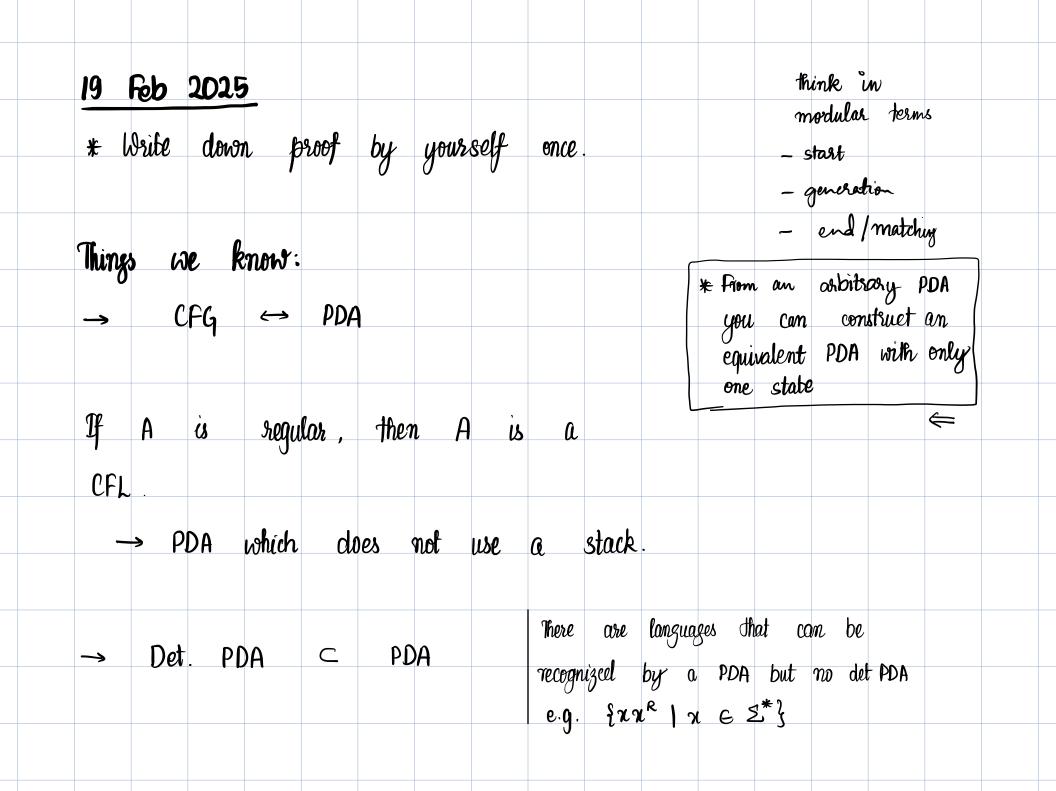


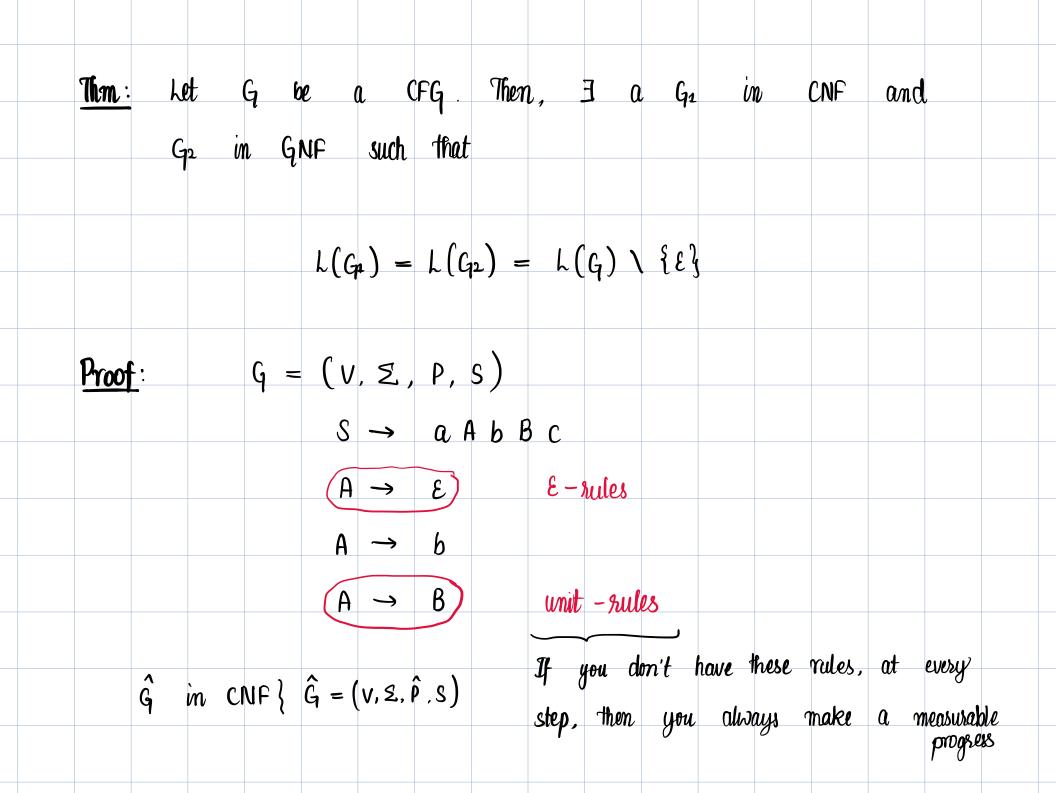
 $(q, \epsilon, s) \rightarrow (q, Os1)$ 0 - sterminal - never change push order S S 1 $\Xi = \frac{1}{2}0, 1\frac{1}{2}$ 1 $\Gamma = \{0, 1, S, R, 1\}^{R}$ Problem: -> we have to = V v T remove D and store it somewhere ~> no other place Solution : - terminals in stack won't change match postially. $(q, 0, 0) \longrightarrow (q, \varepsilon)$

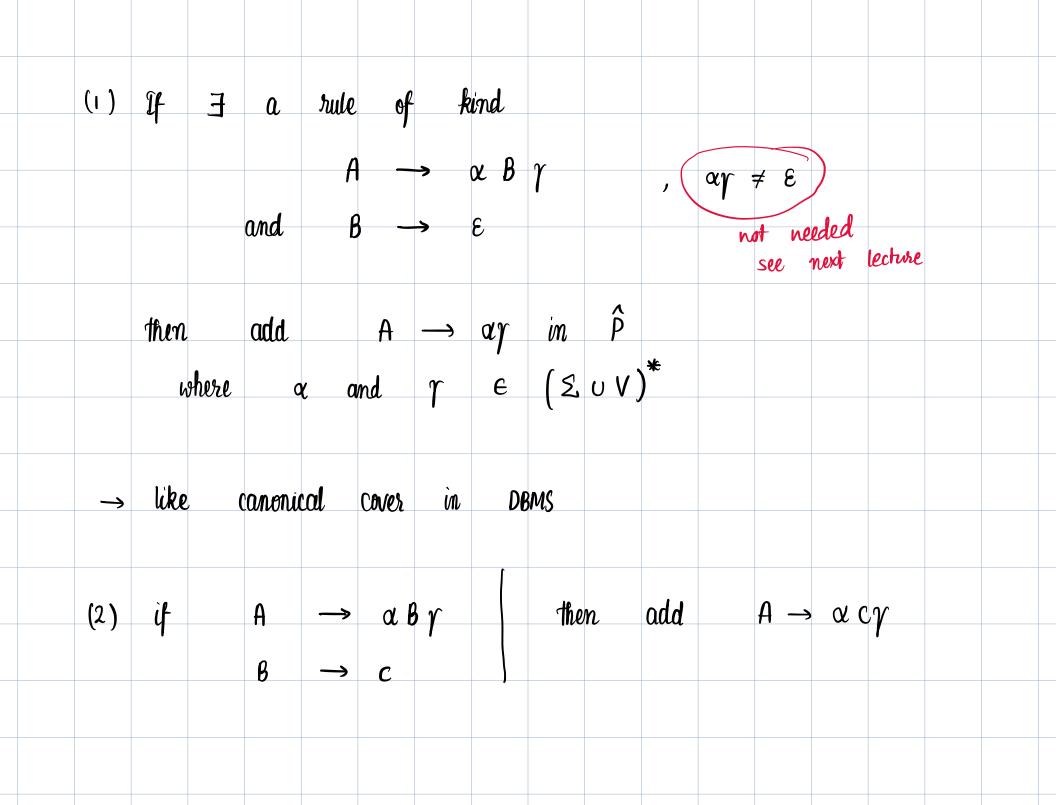
 $(q_0, \varepsilon, 1) \rightarrow (q_0, s_1)$ $(q_0, 0, 0) \longrightarrow (q_1, \varepsilon)$ (q., OS1) (q₀, ε, s) → $(q_1, 1, 1) \longrightarrow (q_1, \varepsilon)$ $(q_0, \varepsilon, S) \rightarrow (q_0, \varepsilon)$ (qo, 0, 1) → (grej, €) $(q_0, \ell, 1) \rightarrow (q_{accept}, \ell)$ $(q_0, \varepsilon, s) \rightarrow (q_0, \mathcal{R})$ $(9\circ, \varepsilon, R) \rightarrow (9\circ, \varepsilon)$ $(q_1, \epsilon, S) \rightarrow (q_0, S)$ $(q_1, \mathcal{E}, \mathcal{R}) \rightarrow (q_0, \mathcal{R})$ $(q_1, 0, 0) \rightarrow (q_1, \varepsilon)$ $|\mathsf{T}| + \left(\begin{array}{c} |\mathsf{T}| \\ 2 \end{array} \right) + 1 + |\mathsf{V}| \quad \left[\begin{array}{c} q_{1}, 1, 1 \end{array} \right] \rightarrow \left(q_{1}, \varepsilon \right)$ P +

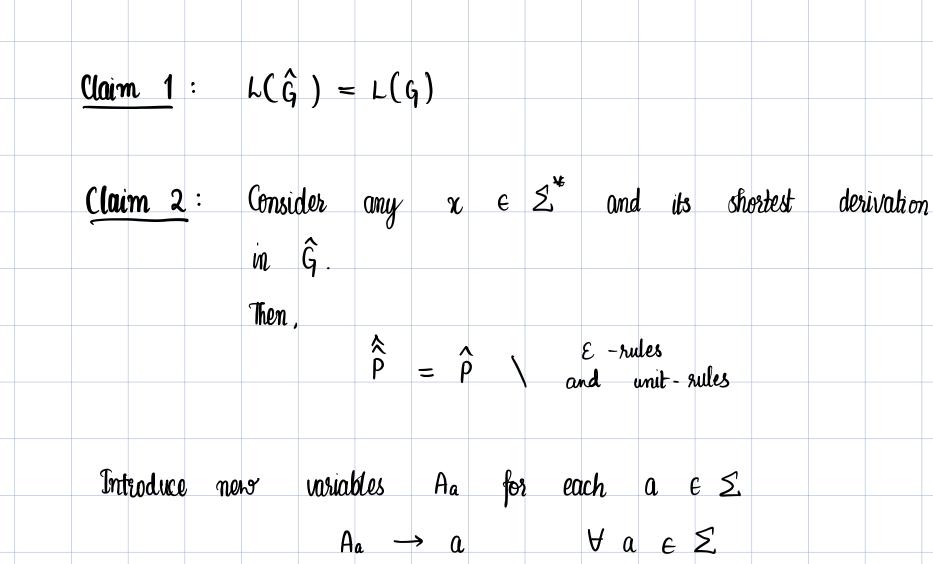




What is c	ontext-free about	t CFLs?	OAI BC	
			l substitution does	not
			depend on co	
Chomsky I	Normal Forms			
Rules are	of the form			
	$A \longrightarrow BC$	A, B.	CEV	
	$A \rightarrow a$	where	a e V	
Griebach N	lormal Form			
	$A \rightarrow a B_{1}$	Br where	k ≥ 0	
		α	nd a e S	

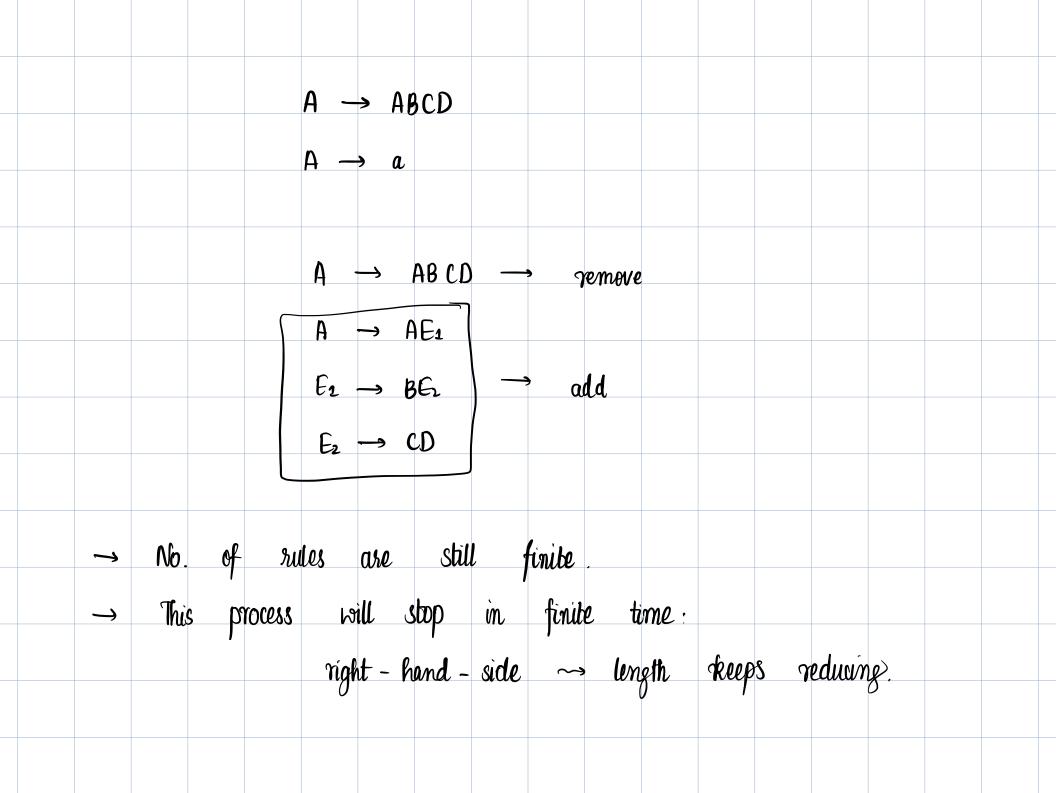






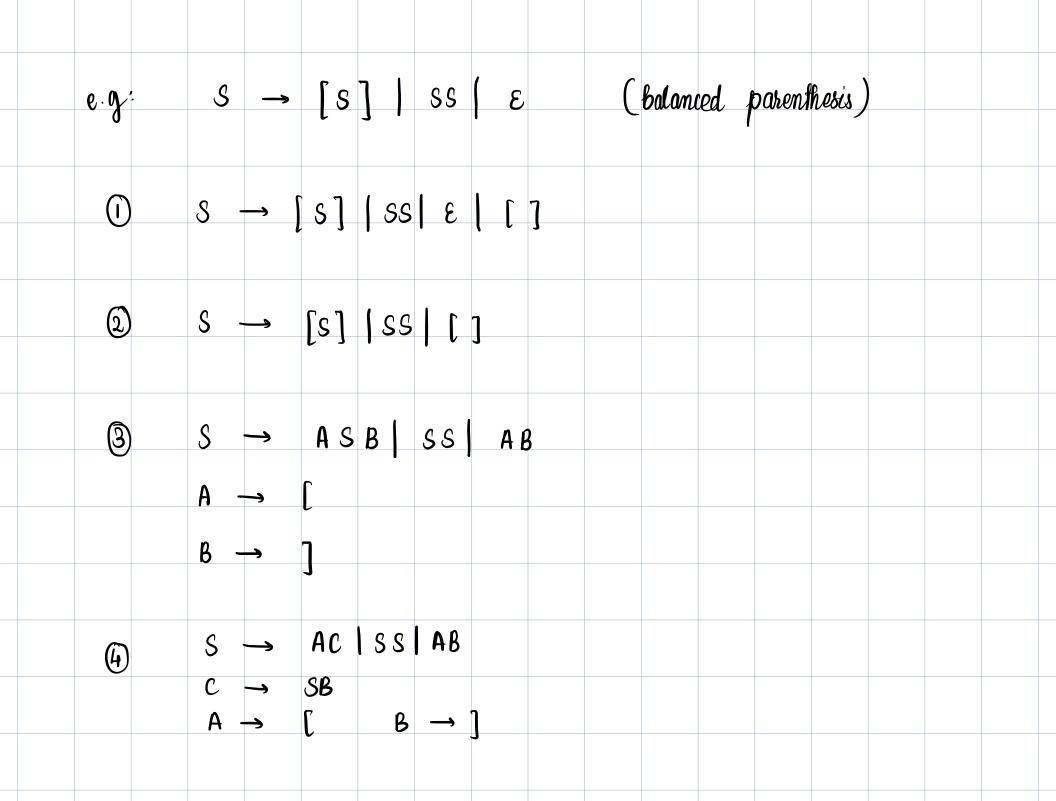
 $S \rightarrow a A b B c \rightarrow remove$ S

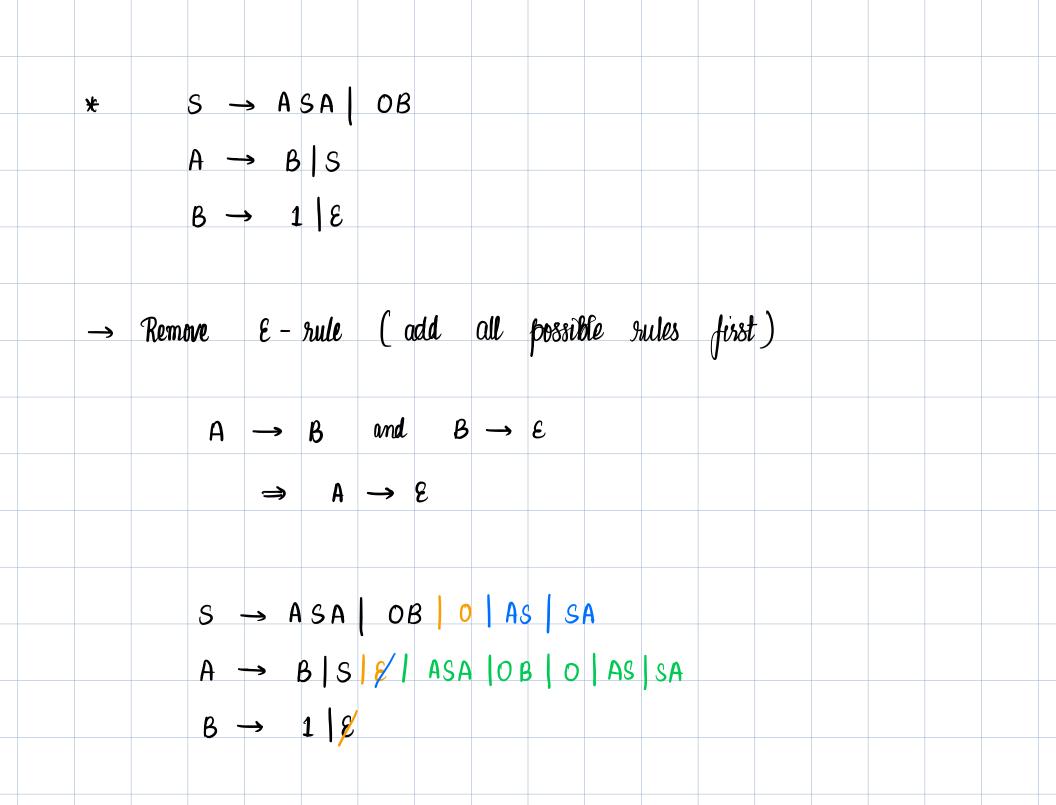
$$\rightarrow$$
 Aa A Ab B Ac \rightarrow add



20 Feb 2025 } x and y can be anything 1) $A \rightarrow \alpha Br$ and $B \rightarrow \varepsilon$ then add $A \rightarrow arr$ $\alpha, \gamma \in (\Sigma \cup V)^*$ 2) $A \rightarrow B$ and $B \rightarrow \gamma$ then $add A \rightarrow \gamma$ Keep applying these rules as long as the grammar stops changing. $e \cdot g \quad G : \quad S \longrightarrow OS1 \quad J \in \mathcal{E}$ $\mathcal{L}(G) = \{ O^n | n > O \}$

*	Get	rid	of	. ع	– rules		(no	unit	rule	es)						
	Ŷ		S	_	0S1						S	->	0S 1	(2 thru	い	
	ſ)	S S	- >	E 01	2	add	all	rules		S	->	01	Var)ables	
	3)	S -		AS				S		AC	AB				
			S ·	->	AB O				С		SB					
			В		1 Variabl	0 入					1					
			rep	are	Vanuel											





Throw away E-rules and unit rules $S \rightarrow ASA | OB | O| AS | SA <math>2^{-3}$ handle ASA, replace 3^{-3} terminals $A \rightarrow 1 | ASA | OB | O | AS | SA |$ β → 1

Pumping Lemma for CFL Let A be a CFL. Then $\exists k \ge 0$ $\exists t \cdot \forall s \in A$ of $|s| \ge k$ \exists a subdivision s = uvvoxy and the following holds: (1) for all $i \ge 0$; $uv^{\prime}wx^{\prime}y \in A$ (2) vr + E] > meanineful pumping $(3) |vwx| \leq k$ If you have a long string s, observe its parse tree

