

Fact 2: L(M) is infinite iff there exists a string of length $k \leq |n| < 2k \quad s \neq \quad n \in L(M)$ $(2) \Rightarrow (1)$: Pumping lemma (pegionhole principle) $(1) \rightarrow (2)$ If L(M) is infinite ~> there cannot be an upper bound on the length of strings. Choose $x \in L(M)$ s.t. it has <u>minimal length</u> > k $|\chi| = r$ j ≥ k J no string in b/w

a language of might take infinite length. in finite time not efficient but works Relations: Recap	This	. gì	Nes	us	an	algori thi	n to	che	ck if	an	auto	naton	accepts	
infinite long, but infinite will finish in finite ?? -> not efficient, but works How to check if two machines recognize Inguage? Use above technique Efficient Automata Relations:	a.	lanei	10.00	of		night t	ake						•	
Implified englin: in finish in finish in finish ime ?? How to check if thoo machines recognize Image Image Image Image	`f			1		lone, bu	t							
→ not efficient, but works How to check if two machines recognize the some language? Use above technique Efficient automata Relations: Recap	UNU1	mire	RIGH	L		in finite	, ,							
-> not efficient, but works machines recognize the some language? Use above technique Efficient automata Relations: Recap										(??) Hout	n ch	ock	if them	
Efficient automata Relations : Recap	 ->	not	effic	cient	, but	works			ma	chines	reco	thize	The some	
<u>Efficient automata</u> <u>Relations</u> : <u>Recap</u>										langua	fe? (lse o	ubove techni	iques
Relations : Recap	 Effù	cient	aut	omati	<u>a</u>									J
	Re	lation	8: (Recap										
$Fix X : R \subseteq X \times X$	Fi	r .	X	:		R C)	κ x X							
$(a,b) \in \mathbb{R}$ = $(a \mathbb{R} b)$ = $(a \sim b)$ = $(a = b)$		0				-	(n k	2 6)	= (0		.) =	. (a = b	
		(α,	b) (EK		-	(00)	- (u	/ ` ` Ľ	リー	- (u = 0	

1) reflexive Rm is an equivalence relation 2) symmetric 🕑 3) transitive 🖸 \rightarrow No of equivalence classes = no. of states in M Properties of Rm () Finite # of equivalence classes Finite Index (c) $\forall x, y \in \Sigma^*$ and $\forall a \in \Sigma$ Right congruence (x,y) ∈ R_M ⇒ (xa, ya) ∈ RM

 $\hat{\delta}([\varepsilon], y) = [y] \in F$ y is accepted ⇐⇒ [y] ∈ F 👄 yeL finite index claim —> finite index only when h is regular $\{a^n \ b^n \mid n \ge 0\}$ $[a^{k_1}] \neq [a^{k_1}] \quad \forall \quad k_1 \neq k_1$