

for $i,j \in \{1,\ldots,n\}$ and $k \in \{0,1,\ldots,n\}$ $R_{ij}^{o} \xrightarrow{\alpha, b} ($ Rij := set of all strings x s.t a+b $\hat{\delta}(q_{\vartheta}, \varkappa) = q_{j}$ and passes through states numbered {q1,..., 9k} prove by induction on k

-> Equivalence testing requires more memory with n 1 $h_1' = \{ a^n b^n \mid 100 \ge n \ge 1 \}$ If |L1) ≤ 100 construct DFA by brute force -> Any language of finite size is regular $L_2 = \{ \chi \mid \chi \in \{0, 1\}^* \text{ s.t. } \chi \text{ has equal} \}$ no. of 01 and 10 as Regular subs kings $\underbrace{O1}\,\widehat{10}$ $\underbrace{CL_2}$ $\underbrace{O1}\,\overline{O1}$ \notin L_2

→ There can be an easier way to describe a finite automata for a language. Pumping Lemma A is regular \implies A has property \mathcal{P} These are B does not have non - Negular languages which the property P, B is not regular have P -> necessary but not sufficient

	,	k	د - آ		: 1										
			v ?	?? }	Pige	onhole	prîn	ciple							
			1		U										
		∿	+	E											
-	t	ای	hould	be	2	[Q]		(fi	nite)					
			r e	A		and		X)	≥ 1	-					
	9	7	there	a	re	ho	ste	ings	of	ler	ngth	≫	t		
		đ	hen	the	. lı	emma	ั้เง	Ve	acuor	esly	true	/			
										V					
													1		1

 $L_1 = \begin{cases} 0^n 1^m & | n > 1 \end{cases}$ Proof by contradiction: Assume Le is regular. Then, 7 t s.t. properties hold $\chi = 0^{\dagger} 1^{\dagger}$ Consider $|\mathfrak{X}| = 2t > t$ Then, $\exists u, v, w \in \Xi^*$ s.t. $\neq \varepsilon$ v must and $|uv| \leq t$ $\chi = uv w$ be within the first Then $u v v w \in A$ t ones $\Rightarrow \Leftarrow$

$$D = \{ O^{n} 1^{m} | n \ge m \}$$
Suppose D is regular. By Pumping lemma $\exists t$ such that
 P holds.

Consider $u = O^{t} 1^{t} = u + w$

 $v \neq \varepsilon$ $|v| \le t$

 $u + v^{t}w \in D$

 $i = O$

 $uw \Longrightarrow \varepsilon$

