

- Any computation \rightarrow is identifying a language.

- these three are universal operations : offier operations like intersection, complementation can be implemented using these

- there's no 'non-regular' expression. Regular expression' - single entity.

* Given a regular expression α , show that $L(\alpha)$ is regular.

15 Jan 2025 Regular expressions Regular languages set of languages set of languages <u>?</u>=] recognized by (B) accepted by finite regular expressions automata (A) Claim 1 : A C B claim 2: BEA last class α is reg exp $\Xi = \{0, 1\}$ Proof of claim 2 $\alpha = (0+1)^{*} \cdot (1)^{*} + 1$ inductively brild autometa combine

Cossectness of M3 $L(M_3) = L_2 U L_2$ The length of M3 Take $x \in L(M_3)$, then $\chi \in L(M_s) \Rightarrow \chi \in L_1 U L_2$ $\chi \in L_1 \text{ or } L_1 \Rightarrow \chi \in L(M_3)$ \rightarrow Use $\hat{\delta}$ $F_3' = F_2 \times F_2 \longrightarrow$ intersection of regular languages Complement of $L : \overline{L} / \sim L = \Sigma^* / L$ regular languages are closed under complementation lurion intersection

