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We do not yet know how to factorize efficiently
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Though we do not know an efficient algorithm to factorise

a number we still can do it in finite time How
does encryption work

Should the set F be non empty Not necessarily

How does a machine behave as in finite states or finite

Q and finite Σ alphabets
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Q Σ a



static
m.fi

8

Def
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finite Q finite set of states F Q is the set of final states

Σ finite set of alphabets
tanbe empty

8 Qx Σ Q alphabets finite set of symko.es
go Q is the start state
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concatenated together

Σ is infinite each element in Σ has finite length
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Language accepted by M

LCM x M accepts a

M recognizes A Σ iff L M A

Any A Σ is a language empty strings too

L M1 x 0,13 1 x contains 11 as a substring
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A x 0.13 1 it contains 111 as a substring

me

Meaccepts everystring in A

To prove L Ms A does not accept any
string not in A
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8 go x qj where j int x mod 3

RELCM.SC 8 go x 9
Proves both 1
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Induction over In

Base case In 0 x E 8 go E go

Inducnhyphasis True for all strings of length almost 1
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Main idea of a finite automaton finite memory requirement


