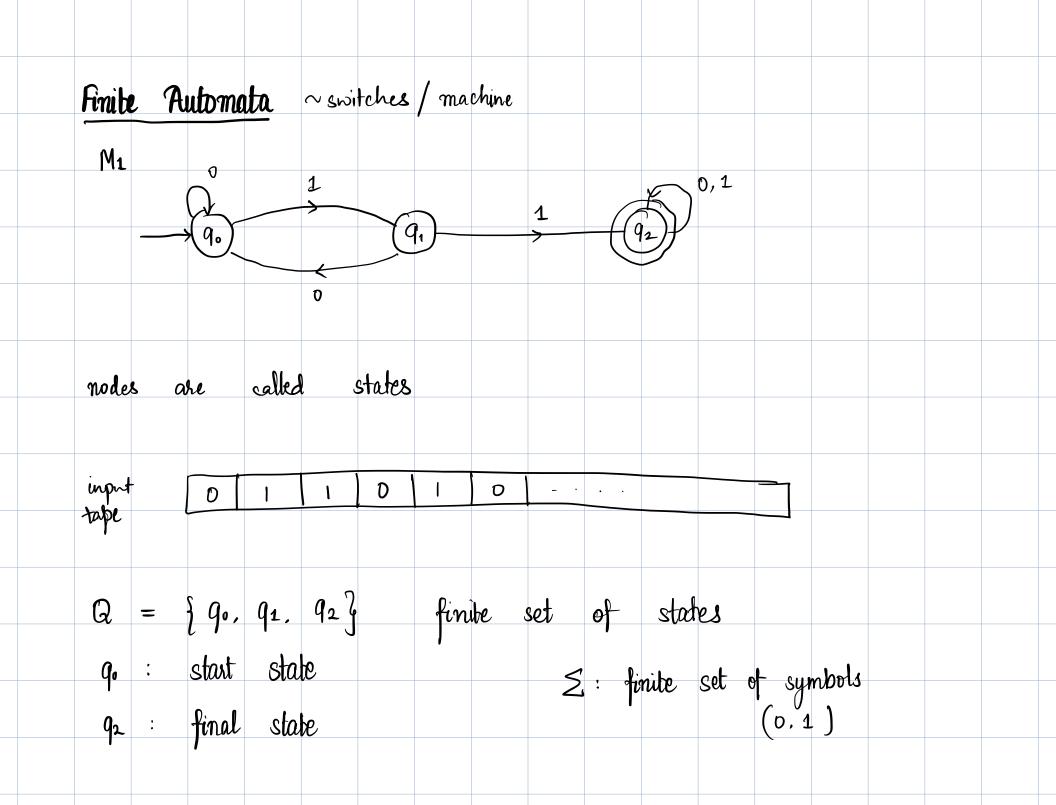
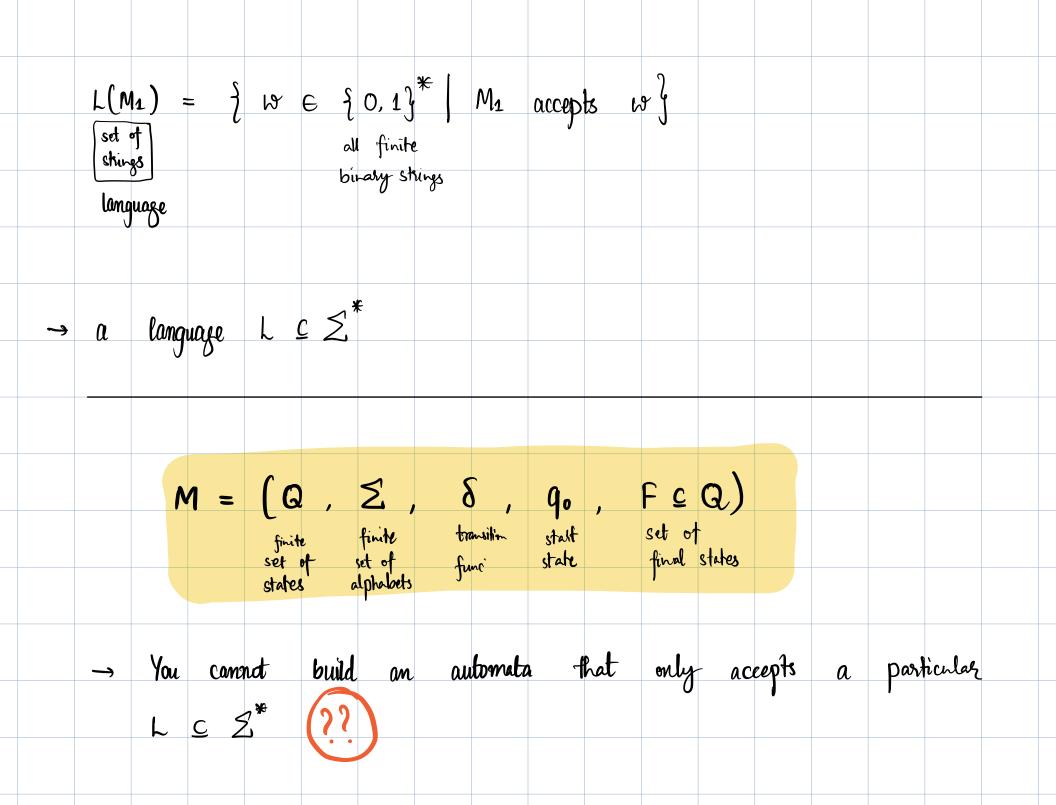


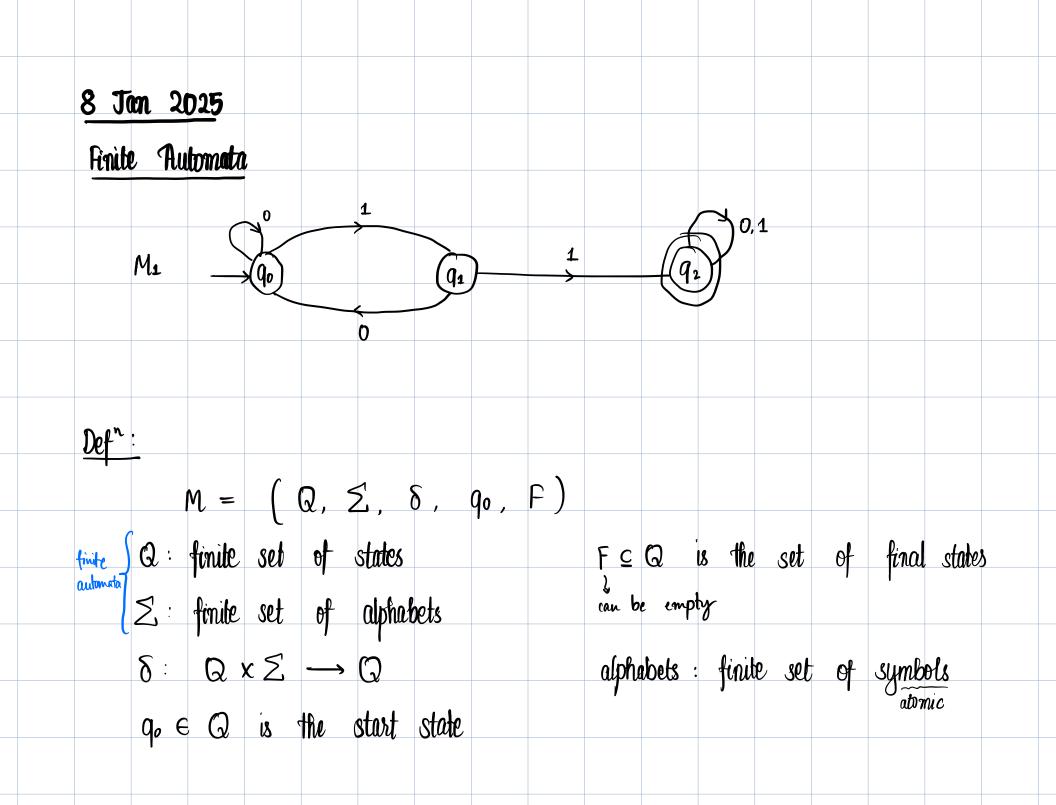
Solution? Check one by one : time required = O(m) $= 2^{\log n}$ solve efficiently >> verify efficiently verify efficiently solve efficiently -> Ne do not get know how to factorize efficiently (basis for credit card pins / secure transaction / encryption) Computability theory (1900s) "computation in principle" can you space Complexity theory (1900s) "computation in practice" Computability theory -> solvable or not < complexity theory: casy or hard

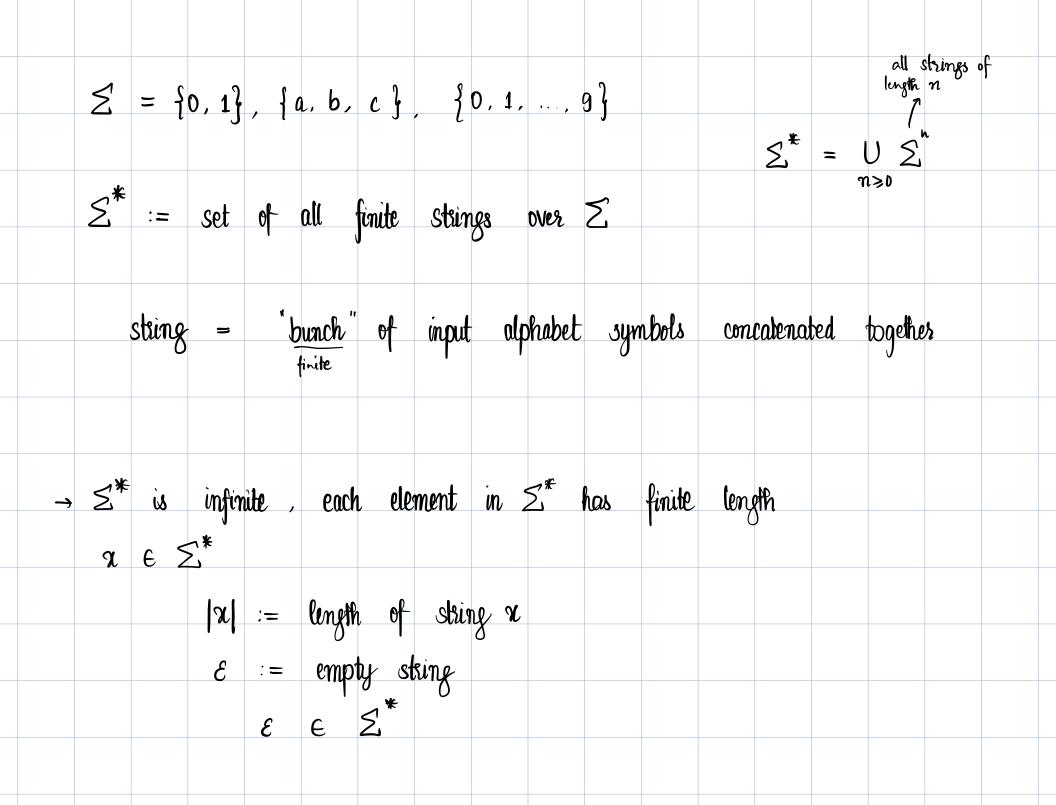


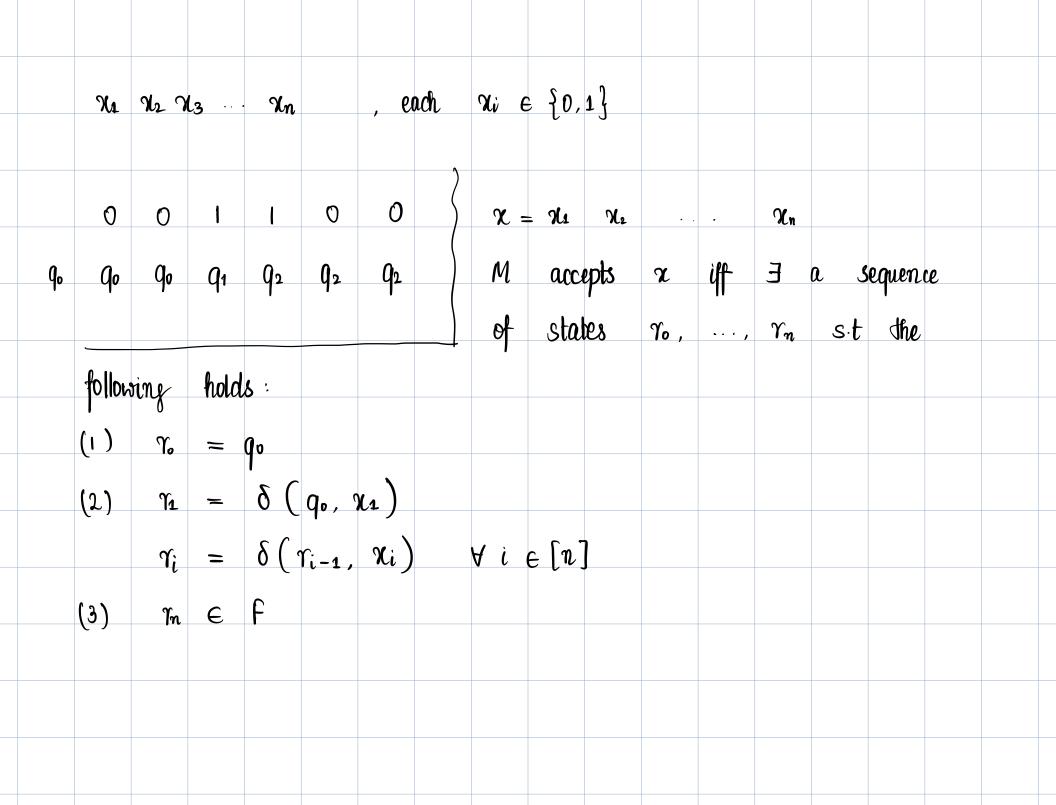
Ô	I	1	D	١	D	l										
q.	٩o	qı	q2	91	q2	92	q 2									
	•															
8	G) x ź		\rightarrow	Q		٦, -	transi t	ion	fun	ch or					
				o)			J									
			•	1)		•										
				,		l										
Mı		accept	s O	stu	NJ	W :	= W:	1, W2	- ,							
if								end			a '	final	state.			
l				I									(The g	e can	be final	
0	1	0	١	0	l	O	1						ى	tates)	finel	
qo	q.	qı	q.	91	qo	q 1	q.	qı								

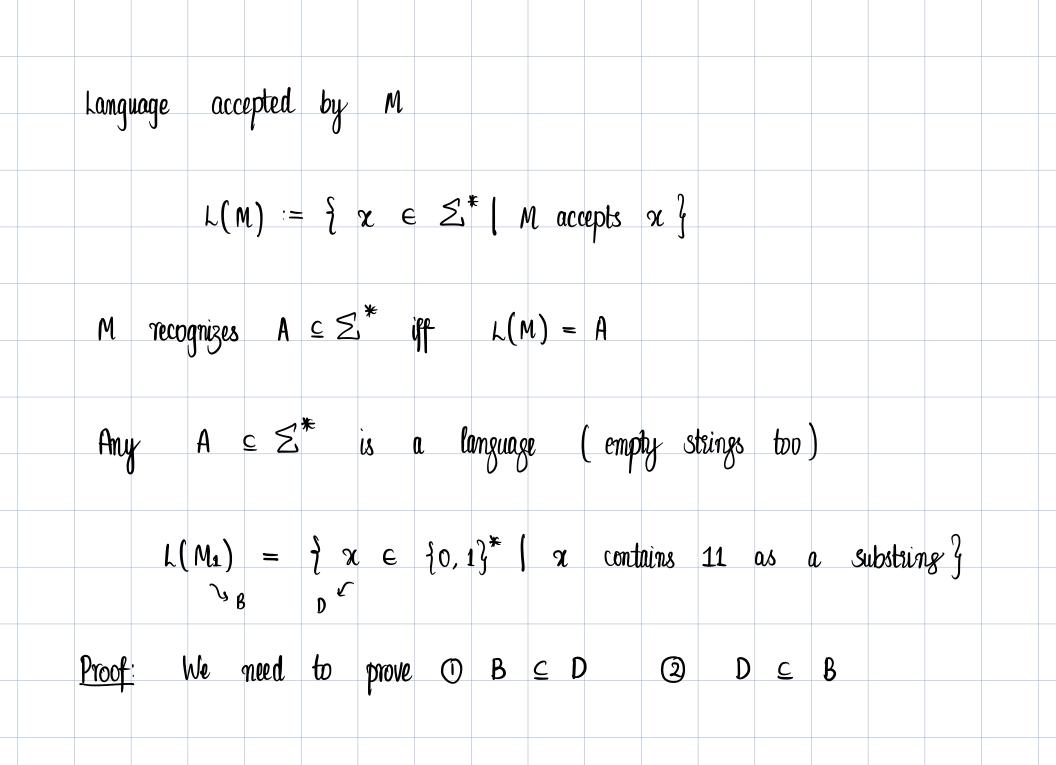


Doubts. () Though we do not know an efficient algorithm to factorise a number, we still can do it in finite time. thow does encryption work? Should the set F be non-empty? Not necessarily 3 How does a machine behave as: -- finite states, or finite \rightarrow Q $\rightarrow \infty$ and finite Σ alphabets? \rightarrow $\Sigma \rightarrow \infty$ and finite Q $\rightarrow 0, \Sigma \rightarrow \infty$

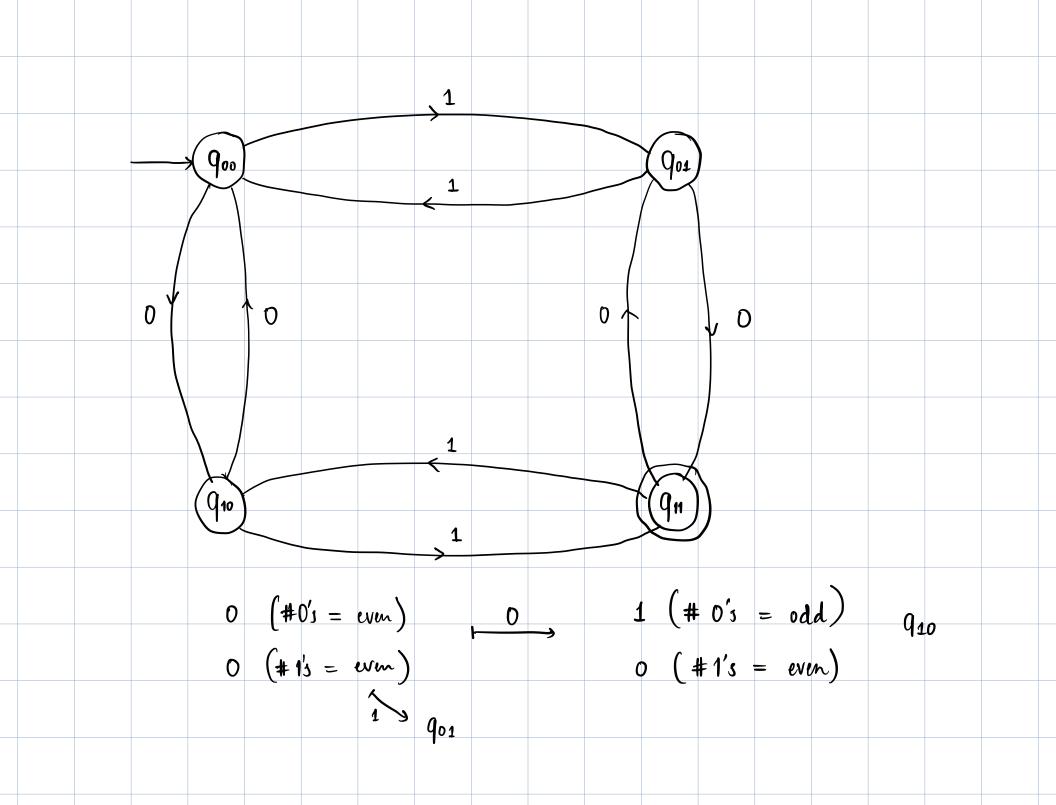


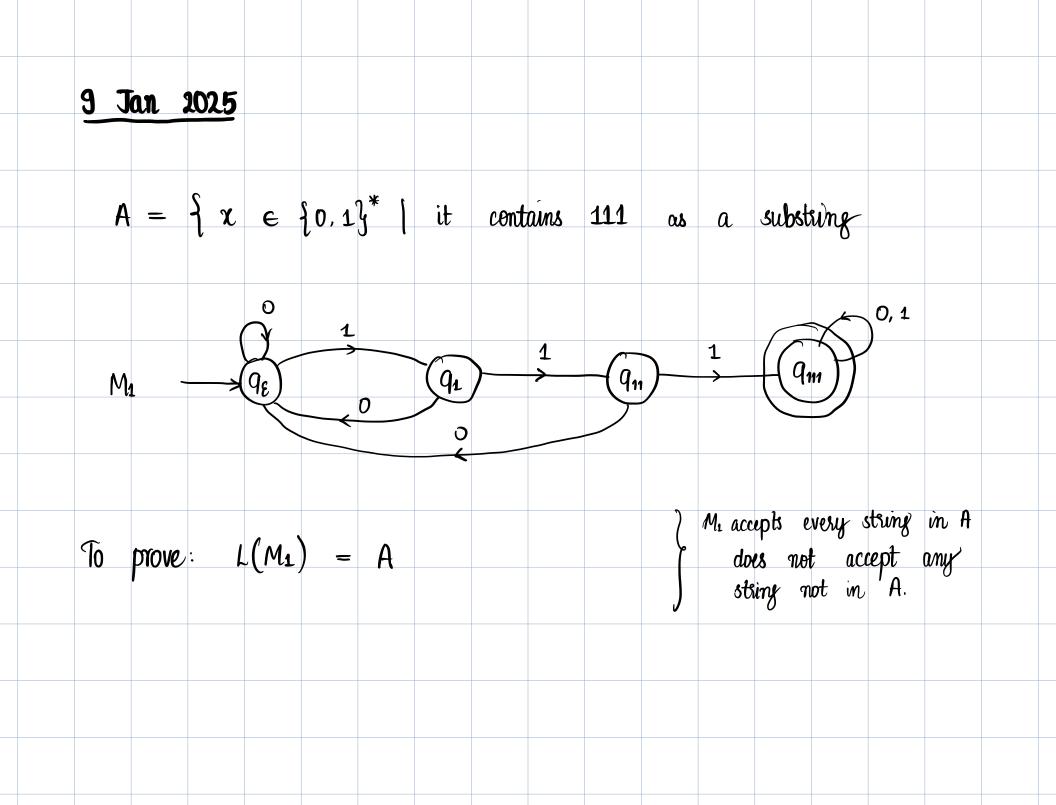


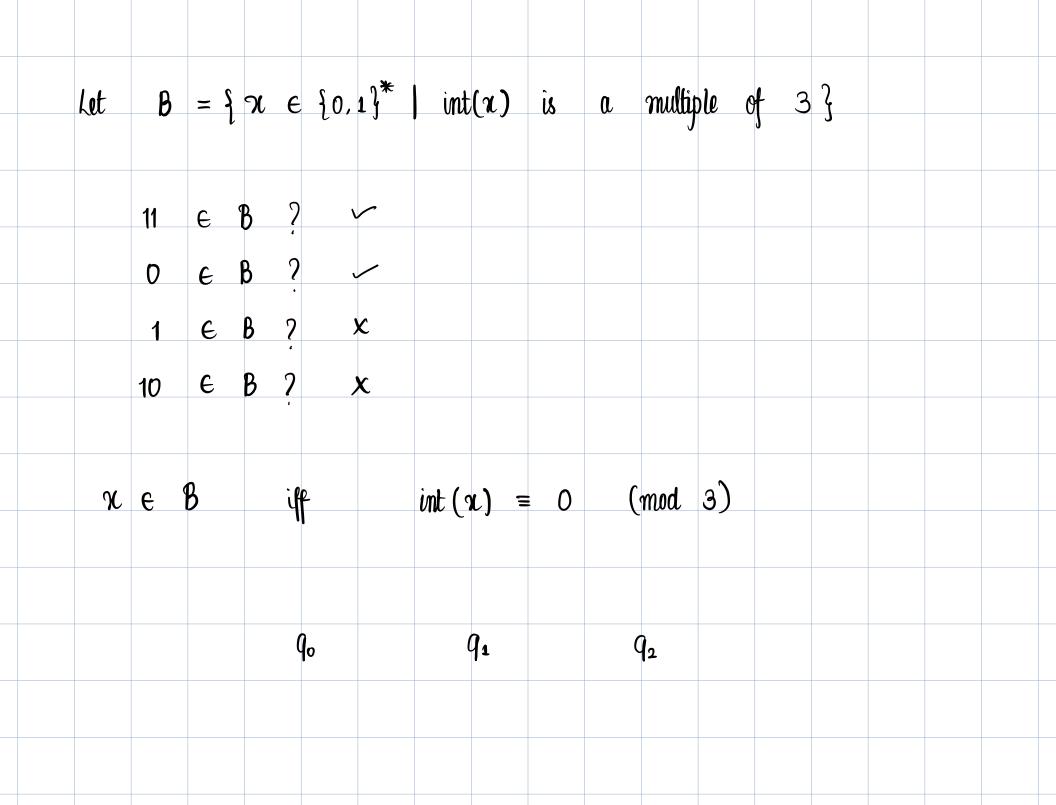


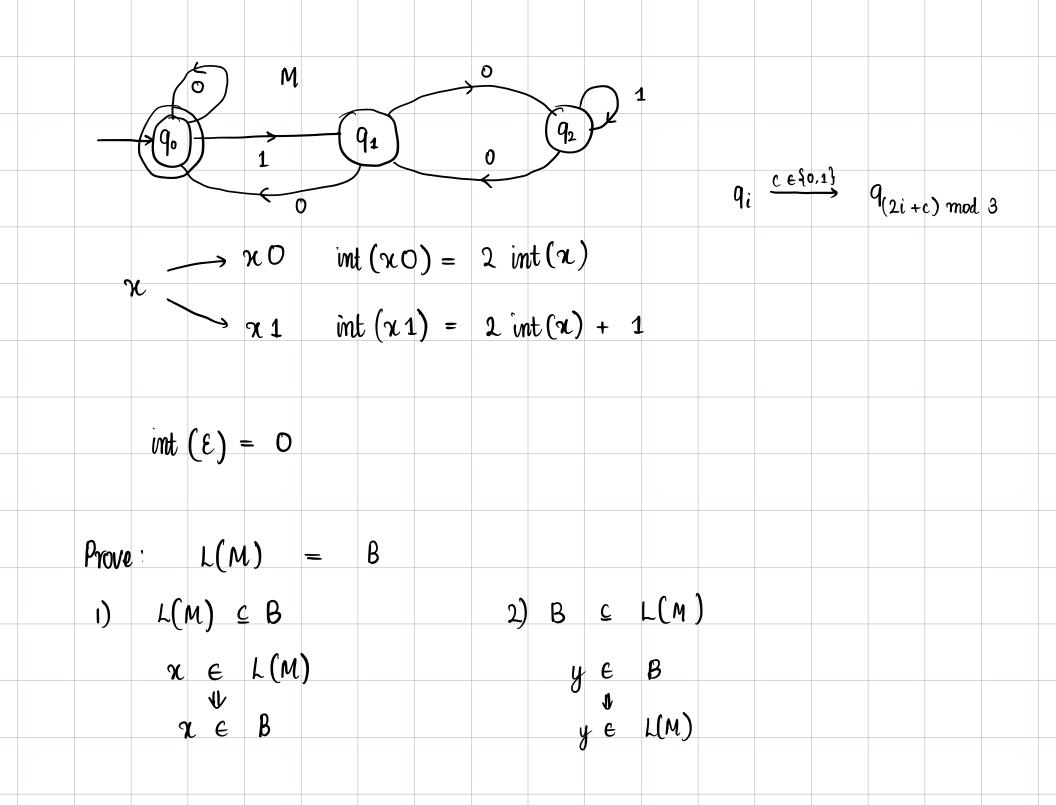


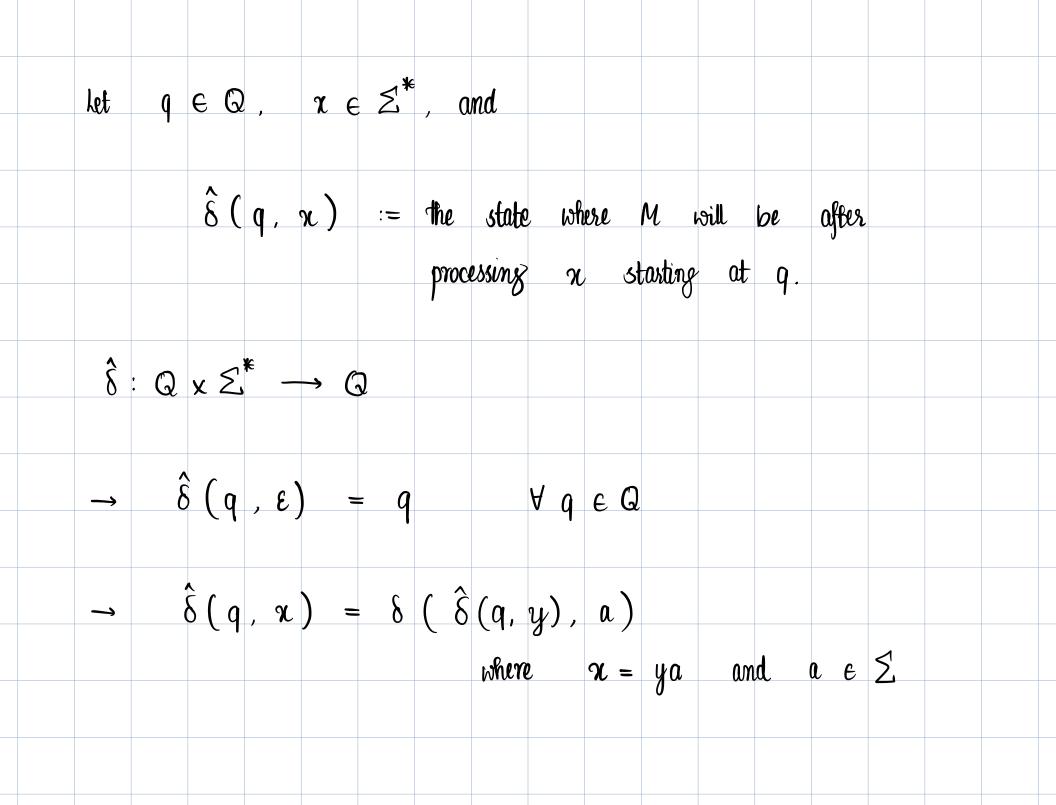
"regul	ar",	lan Ìff (M)	E	A	<u>C</u> finil	≥ * e 0	is utomat	called	M	such			empty str <i>ine</i> {E}	f≠s sa	set langu	
β	- {	X	e {t) , 1 }*	x	(ontains Ind	oc od	ld « d	n0 . NO .	ef of	0′s 1′s	z			



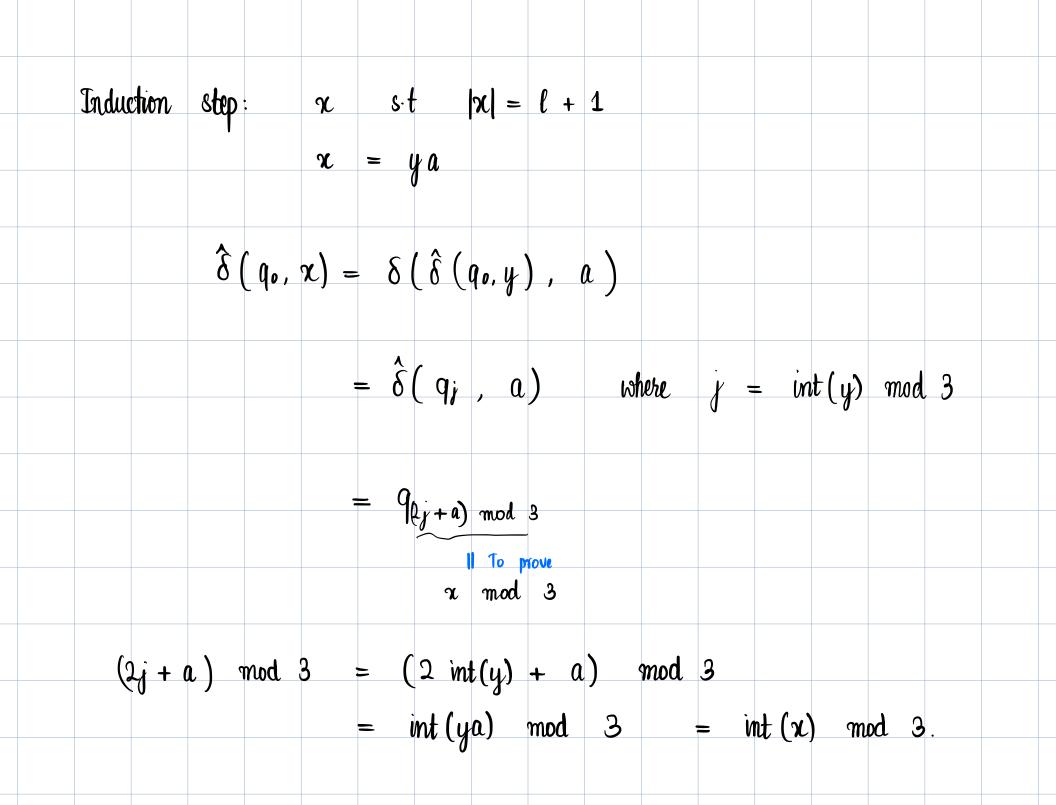








Claim: For every
$$x$$
,
 $\hat{\delta}(q_0, x) = q_j$, where $j = int(x) \mod 3$
 $x \in L(M) \iff \hat{\delta}(q_0, x) = q_0$
 y induction
 $0 = int(x) \pmod{3}$
 t
 $x \in B$
Proof of the claim: Induction over $fx|$
Base case: $|x| = 0$ ($x = \varepsilon$): $\hat{\delta}(q_0, \varepsilon) = q_0$
Induction hypothesis: Tsue for all strings of length atmost l .



Main idea of a finite automaton -> finite memory requirement.