
 

IE.bg a asshne gtems
Iweek7

Atomic variables in C appreference.com

increment without hardware support
uses compare andswap
internally

what
in

drawback

Lass boundedaiting

multiple threads

1 int temp same threads keep

gettingthe chance

2 do CAS is non deter
ministic

1 temp u

while temp compare and swap v temp temp 1



Solution hardware level instruction fetch add C

returns the old value
and atomically increments

Mutextocks
atomics

may not always be easy

balanced BST

rotation requires modifying

Mutex locks multiple locations

multiple threads can
1 while true

be doing tookups.no
and occasional

need
1 acquire.to Tnaa be updates looks
2 critical section atomic too

3 releasetockImultiple threadsacquire locks

4 remainder section



Fairlocks and unfair locks

Intry
section CAS not fair

Definitions not implementations must be mi
two threads

acquire will enter CS

1 while available

busy wait

not doing anything
useful

alternative

2 available false sleep giveup CPU

release hore
complex

implementation
1 available true



Fix and in acquisel must be atomic

The 1 The 2

16 reads available as true

26 reads available as true

LF sets available F

17 sets avail false

Only load and store being atomic is not sufficient

Fix Use CAS

Bounded waiting



RISV try running multiple threaded load and store

atomic class

Intel load and store is atomic by default test

array
Natural extension of a lock is a semaphore multiple threads

write check

logs and see

See if it makes
sense

locks for a group of threads

proposed by Djikstra 1960s

wait and signal Atogenoperations



wait s 11Def not an

1 whole S 0 implementation

11 busy wait spinning

2 S

signal s

jp
1 Counting semaphores

2 Binary semaphores same as mutex lock



Can solve many synchronization problems

Ex assume synch initialized to 0

We want 51 in Pe to happen before 52 in P2

P1 P2

S1 wait synch

signal synch S2

Counting semaphores can be implemented using binary
semaphores



Template no busy waiting block and wake up

TWEETand Binary semaphores

Semaphore implementation with no peg
keep hoping spinning

typedet struct wait and si

int value

processes list

semaphore



hrhnf.FI Fugate nymhgdt hilmaphthingy

wakeup

If sleeping time is not too long

busypaiinkuiaekqf.no
spin lock no context witch

Semaphores

1
spin lock

In single core system spin lock busywaiting busywaiting

is obviously not allowed



Problems semaphore code is not protected

entire wait and signal must be atomic

Skin protect code with CAS

atomic X We have a struct here



S 1

The1 The2

s val s 0

sup n s

time

124
The 2 gets added

23

14 the 2 gets added

Both of them get blocked no one to wake up

not satisfied



5 1

Try for S
2

The 1 The 2

5 wait s wait s

three
threads

6 Mutual exclusion

Book Operating Systems Three Easy Steps

Locks lock init

struct lock 3

Hag guard queue lock acquire

Read from book

pg
348



that

aq
Lock

the
1

release

auewes

11 iqetooksLockiAectwok needs

lock init Acct

the 1C The21

5 acq.laAcct S acq Acct only
6 6 one ofthems



For CS
you need

CS

To maintain flag and queue you need guardg

whys

performance hardware today is multicore

1 program uses 1 of 66 cores very inefficient

try parallelizing code as much as you can

If not possible
execute sequential code using

these locks and semaphores



TestandSet
protects lock specific D s

4th flag guard
thread and queue
specific
Datastructures

analogy Hospital system

Tickettfffand add int 0 1
1 in book

int temp 0

0 0 v

return temp

ticket
turn



Semaphores

Boundedbufferproblem

Dlt
4 multiple

multiple consumers

producers Bounded buffers

n buffers each can hold 1 item

semaphore mutex initialized to 1

Semaphore full initialized to 0

Semaphore empty initialized to n



produce consumer app


