
 
secondary

filesystem
OS subsystem or smaller

systems part
of a

provides abstraction like larger

files and directories
system

hides complexity of underlying
storage devices

filesysteminterfacing
Processes identify files through a

file handle file descriptor

In UNIX the POSIX API

is used to access files
devices sockets etc



Input Output libraries

ppm.fbse.fud.MN

tIosystlcallAPI

open.close.read.mil

TE frets



What is the mapping b w

library functions and system
calls

topen open

fclose close

open gettigahandle

mode tint open char path

mfg
access mode if flags

Access
o Rp only

contains

permission 0 CREAT

check performed 0 RDRW specify file
creation

by Os
Ls al 0 WRONLY rux using

0 SEARCH mode owner
0 EXEC group oh



group

open
returns a non negative

integer

file descriptor

1 on error

sets earno to

indicate error

Processviewoffile

DH.IE

2



Per process file descriptor
table with pointer

to
a file object

file object inode
many
one

Ñht do file descriptors 0 1 and

2 represent

2 What happens to the FD and

the file objects across fork
exec

3 Can multiple FDs point to the
same fileobject



Readandwriter

ssize t read int fd void but
size t count

file
handle

of bytes
pointer to read

to the
buffer where

read data will
be stored

read returns of bytes EEched

actually read
can be smaller

thot

than count



ssize t write int fd void but size t
count

no of
pointer to

bytes
the data to to write

be written from the
buffer

return no of
bytes written

FFESTD.IN
1 STDOUT

2 STDERR



beef file
handle

1ft
eseek int fd off t offset int whence

signed
integer target SEEK SET

type offset SEEK CUR

SEEK END

On success returns offset from the

starting of the file
Examples

Iseek fd 100 SEEK CUR
forward the

file position
Iseek fd O SEEK END

by 100 bytes

file position at EOF
returns the file size

Iseek fd 0 SEEK SET

file position at
the beginningof
the file



foleinformatonlstat.fstat.int
stat const char path struct stat but

returns information about the file
pointed to by path

Information is filled up in

the structure stat

Example

struct stat sbut
stat home user tmp txt sbut

printf inode d size Id In

sbub st ino but St size

other useful info in stat
st wid st mode



Presviewoffile.at rfosk

PCB parent

i.fi

t

On fork 1 child inherit the

patent process state

All file descriptors remain open
in the child

FDs point to the same

file object



Jessviewffileafterexects
PCB parent

H f

On exec destroy memory state

of calling process to load new

binary

By default it does not destroy
FD tables

FDs point to the same file
objects as pointing earlier and

remains

open



To close FDs on exec specify
O CLOEXEC flag during open

what happens to FD and the

file objects across

fork
the FD table is copied

across fork file objects

are shared

exec

Open files remain shared

by default



Dcatefilehandedupanddup2
int dup int oldfd
the dip system call creates a

copy of the file descriptor oldfd

Returns the lowest numbered

unused descriptors as the new

descriptor

Old and New FP represent
the same

file
int fd duptd

fd open tmp txt
close 1

dupfd dup fd
dupfd will
be 1

printf Hello World In assuming

Will be written to
STDIN 0

tmp txt
is open



P1

fdt openCfile11

tdupcfd11Beforedupllpc.B

P1

IA
assume STDOUT is closed

before

Afterdu

Duplicate descriptors share the same

file state

Closing one file descriptor does
not

close files



int dup2 int oldfd int newfd

close newfd before duping the

file descriptor oldfd

dup2 fd 1 equivalent to
close 1

dup fd

Useofdup17ishellredirection

Example.es tmp txt

Implementation

fd open tmp txt

close 1 11 close STDOUT

close 2 11 close STDERR

dup fd 11 1 fd
dup fd 1 2 fd



exec Is

UNIXpipesystemcall.pe

pipel takes array
int td 2 of two FDs as

pipe fd input

fd of read
end of

PCB P1 the
pipe1

fan wrote

a end of
oa

Ytite the pipe

Implemented as a

FIFO queue in

OS



fork duplicates the file descriptors

Parent PCB parent
2 0 1 MH1

pipe fd
ᵈᵈ aq

write

ay

is

l

At this point both parent and

child can read write to the

pipe



close one end of the pipe both inparent

Parent PCB parent

intF o 1 M7

ᵈᵈ

pipe fd Joutwrite

Iquue

myc
PCBchild

Result

a queue b w parent and child

cpiping.is wo 1
pipel followed by forkl
parent exec Is after making

STDOUT out fd of the pipe sing



Child exec wc after closing
STDIN and duping in fd
of pipe

Result input of WC is connected

to output of 1s

tIi lE it

ia
sector of the disk

Creation of partition is the first
step does not create

filesystem



A filesystem
created on a

partition to manage the

physical device

and present the

logical view

Physical disk logicalcommand

lderlsdaihfi.ae partitions

fdisk ofim dev sda1

GET Ider sda2

Idev sdas

All filesystems provide utilities to

initialize the filesystem on the

partition e.g MKFS



II.IE
mn

Idea sda1 mkt EXFS derma

Idev sda2
F

I

Ider sda3

MKFS creates initial structures in

the logical partition

creates
entrypointphs.pt

FS

the filesystem is ready to

be mounted



SIIulftsociatesanto
uperblock

with the filesystem mount point

example the GS will use the

8ad 1 fItaiffnfqhme nwoSuperblock

home

thatUSER mount t exfs devsda2 home

I

pointmount Idev sda2 from

mount

EXFS flags
dyin 1 a

filesystem ts options

loadfobesystencoscuptti.ae

1Ip



structureofanexamplesuperblock.es
truct superblock

v16 block size

v64 num blocks

v64 last mount time

v64 root inode num

464 max inodes

disk off t inode table
disk off t blk usage bitmap

Superblock
contains information regarding

the device and the filesystem organisation

in the disk



Pointer to different metadata
related

related to the filesystem

ex list of free
blocks is required

before adding data

to a new file directory

Filesystemdganization

Tck_bitmpIdBitmapII is

Indebitmapaddress

ffd
Fib

dgYOther info



anode t get_inode SB sb long info

inode t inode alloc mem inodel

read disk inode sb inode table

info size_of
inode

return inode

given any inode number loads the

inode structure into memory

QIF.is
ysten is mounted the inode no

for root of the filesystem i.e

the mount point known

root node can be accessed



How to lookup search files dir
under root inode

How to locate the content in

disk

How to keep track of size
permissions etc

Inodes UNIX

On disk structure

contains information regarding files directories

in UNIX systems

unique number
in the fs

Is i filename

contains access permissions

access time file size etc

IMPORTANTLY information regarding

file data location onthe device



Directory inodes
also contain

information regarding
its content
structure

PFileoffettoDiskAddelpp.ge
How to efficiently translate file

offset to device address

file size few bytes to GBs

can be accessed in sequential or

random manner

How to design mapping structure



Contiguousallocation

Inode
K

S 1

Works nicely for both sequential

and random access

Append operation is difficult
How to expand files

Relocation

External fragmentation



LinkedAllocations

Eli

Every block contains pointer to

next block

Advantage flexible easy to grow and

shrink

Disadvantage random access

why last efficient append operation



DirectBlockpointers

5 1

direct pointers
to block

flexible growth shrink random access

is good

Cannot support files of large size



IndirectBlockpointers

Inode contains
pointers to a

block containing pointers to

a data block

Advantage flexible random access

is good

Disadvantage Indirect block access

overheads even for
small files



Hyb1okPoiters ExtF

Direct pointers PTRO to
Ext inode

PTR 11

641141111211

ÑÑ b lk
address

Single indirect 0 to 11

pointers
PTR 12 file block

address

12 to
Double indirect 1035

PTR 137

1036 to 1049611

Triple Indirect



How to locate content in disk

Inode structures in inode are

used to map file offset
to disk location

How to keep track of size permissions

etc

node maintains these info

Organizingdirectorycontents

struct dir entry
inode t inode num

char name FNAME MAX

way to
fixed size directory entry

simple

organize



Advantage avoid fragmentation
rename

Disadvantage space wastage

Ibesize
struct dir entry
inode t inode num

v8 entry Len

char name nam ten

contain length explicity
Advantage less

space
wastage compact

Disadvantage inefficient rename

require compaction



How to search lookup files dir
under root inode

Read the content of the root

inode and search the next

level dir file

Eftmdmainff.ms t
metadata

structures like superblocks inodes

directory entries to provide a

filesystem abstraction like files
directories

How to lookup search files directory
under root inode



Read the content of the root
inode and search the next

level dis using the name

and find out its inode number

Read the inode to check permissions

and repeat the process

filesystemandeaching
Accessing data and metadata

from disk impacts performance

Many file operations require
multiple block access

e.g opening a file
normal shell operations Is



Executables config files library etc
are accessed frequently

Many directories containing executables

config files are also accessed

amppgm.mg
iygpya

also accessed frequently

Can we store frequently accessed disk

data in memory
What is the storage and lookup
mechanism

Are the data and metadata
caching same



How is the cache managed

Eviction policy
Complication

Blocklayercaching
lookup memory

cached I o cache using

Userprocessed the block number

as the key
read write stat

Fi a

Hookup
reade

TahE
























