									,				
Line	ar te	ansfort	nation	en	ve ct e	r spa	<u>ces</u>						
\rightarrow	map	betr	tween	tion) vect	or sp	oaces	over	the	Same	field	•	
\rightarrow	prese	erves	the	linec	vr st	eucture .							
0.	het	V1	7	R	= V2								
		T(x) :	= 2ห	,	XE	R						
								s affine	e frans	prinction			
	het	a,	b e li	2	T(a)	= [ax]	+ b	1	xel	R			
		Fo	r (1	r to	be	linear	linear , t	0 = 0		> ∵ T	(0)	= 0	

$$\begin{array}{c} \text{let} & T_{\Gamma} : \mathbb{F}^{n} \rightarrow \mathbb{F} \\ & (\chi_{1}, \dots, \gamma_{n} \in \mathbb{F} \text{ fixed} \\ & T_{\Gamma} \left((\psi_{1}, \dots, \psi_{n}) \right) = \sum_{i=1}^{n} \gamma_{i} \psi_{i} \\ & T : \mathbb{F}^{n} \rightarrow \mathbb{F}^{2} \\ & T \left((\psi_{2}, \dots, \psi_{n}) \right) := \left(T_{\alpha} \left(\psi_{2}, \dots, \psi_{n} \right), T_{\gamma} \left(\psi_{1}, \dots, \psi_{n} \right) \right) \\ & \text{linear} = \text{linear} \text{ Kansformation} \\ & Support \quad n = 1 \ ; \alpha_{i}, \gamma_{i} \\ & T_{\alpha} : \mathbb{F} \rightarrow \mathbb{F} \quad T_{\gamma} : \mathbb{F} \rightarrow \mathbb{F} \\ & T \left(\mathbb{E} \right) \\ & T \left(\alpha + \beta \iota_{0} \right) = \left(\alpha_{i} \alpha_{i}, \gamma_{i} \alpha_{i} \right) \\ & T \left(\alpha + \beta \iota_{0} \right) = \left(\alpha_{i} \alpha_{i}, \gamma_{i} \alpha_{i} \right) \\ \end{array}$$

(2) Composition of linear transformations

$$T_{1}: V \rightarrow W$$

$$T_{2}: W \rightarrow Z$$

$$(is also a fincer
transformation)
$$V, W, Z are all vector
spaces over F
(3) Let $T \in L(V)$ and T be an

$$T^{-1} (v + av) = T^{-1}(v) + a \cdot T^{-1}(v)$$

$$T^{-1} (v + av) = T^{-1}(v) + a \cdot T^{-1}(v)$$

$$T^{-1} (v + av) = T^{-1}(v) + a \cdot T^{-1}(v)$$

$$T^{-1} (v + av) = v + av$$

$$T^{-1} (v + av) = T^{-1}(v) + a \cdot T^{-1}(v)$$

$$T^{-1} (v + av) = v + av$$$$$$

$$\begin{aligned} \left(u + v, w \in V \text{ and } u \in F \right) \\ f + \left(\tau^{-1}(w) = v_{1} + \sigma^{-3} \right) \\ u + \sigma^{-1}(w) = v_{2} + \sigma^{-3} \right) \\ f + \left(\tau^{-1}(w) + \alpha \tau^{-1}(w) \right) \\ f + \left(\tau^{-1}(w) + \alpha \tau^{-1}(w) \right) \\ f + \sigma^{-1}(w) + \alpha \tau^{-1}(w) \\ f + \sigma^{-1}(w) + \sigma^{-1}(w) \\ f +$$

$$T \longrightarrow one \quad one \quad \& \quad onto$$

$$Supp$$

$$ket \quad (x_{1}, \dots, x_{n}) \in \mathbb{F}^{n} \quad dhen \quad \sum_{i=1}^{n} div_{i} \in V$$

$$and \quad by \quad def^{n} \quad T\left(\sum_{i=1}^{n} div_{i}\right) = (x_{1}, \dots, x_{n})$$

$$T_{i} = x_{2}$$

$$f(x_{i}) = f(x_{2})$$

$$y_{i} = x_{2}$$

$$f(x_{i}) = f(x_{2})$$

$$y_{i} = x_{2}$$

$$f(x_{i}) = f(x_{2})$$

$$y_{i} = y_{2}$$

$$f(x_{i}) = f(x_{2})$$

$$y_{i} = y_{2}$$

$$f(x_{i}) = f(x_{2})$$

$$y_{i} = y_{2}$$

$$f(x_{i}) = f(x_{2})$$

$$f(x_{i}) = 0$$

$$f(x_{i})$$

Definition of T depends on the basis and the ordering - Canonical ordering - Ask problem set 2 (e) -, what are E&F?

W is isomothic to
$$p^n$$
 via T_2
 $V \xrightarrow{T_2} p^n \xleftarrow{T_1} w$
 $T_2 \xrightarrow{T_1} W$
 $T_2^{-1} \cdot T_3 : V \rightarrow W$
and $T_2^{-1} \cdot T_2$ is a linear bijection address of
vector changes
(vector itself is
 $f_1 \otimes g_{1}(R)$, dim $(\mathcal{P}_2(R)) = 3$
isomothic to R^3
 $\mathcal{P}_2(R) \rightarrow$ canonically ordered)
 $= \{1, \alpha, \alpha^2\}$

You don't need to solve for the entire system -> use the corollary to form A find det (A). Exercise. 1. Consider the vector space $\mathcal{P}_2(\mathbb{R})$ with a basis given by $\mathcal{B} = \{1 + \alpha, 1 - \alpha^2, 1 + \alpha + \alpha^2\}$ ordered basis order \rightarrow $v_1 = 1 + \chi$ $v_3 = 1 + \chi + \chi^2$ $v_2 = 1 - \chi^2$ what is the coordinate representation of P2(R) with respect to the above ordered basis?

 $\mathcal{B}_{2} = \{(0,0,1), (0,1,0), (1,0,0)\}$

 $(\alpha_{\circ}, \alpha_{1}, \alpha_{2}) \xleftarrow{\ } (\alpha_{2}, \alpha_{1}, \alpha_{2})$

Q: How do we relate two distinct co-oridinate representation of a finite dimensional V.S?

Matrix Representation of a linear transformation het V, W be vector spaces over F. Then L (V, W) is also a vector space over F. What is the dimension of L(V, W) given V. W are finite dimensional?

