

Doubts

- 1) Where does all this fit in Computer Science?
 - AI & ML, NLP
 - Data Science & big data
 - Computer vision
 - Algorithm design & analysis : <u>randomized algorithms</u>, performance analysis

21

- Cryptography and security
- Software Engineering
- Patabase systems: query optimization, indexing and sampling.
- Networking
- Game development, simulation, robotics.

8]	Jan 2	025											
 ->	popul	ation	data	will	olivays	ь	e un	know	n.				
 \rightarrow		Popula	tion	Paramet	ers				Estimators	_			
		mean,	u						$\overline{\chi}$				
	-7	Varianc	e. 5 ²						5 ²				
	·	noorti	m. D						ĥ				
		propond	n, p						ľ				
\rightarrow	Stati	stics	ore	used	as	estim	atoss.						

$$r^{2} = V(X_{i}) = E(X_{i}^{2}) - (E(X_{i}))^{2} = E(X_{i}^{2}) - \mu^{2}$$

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \leq X_{i}^{2} - \bar{x}^{2}$$

$$E(S^{2}) = \frac{1}{n} \leq E(X_{i}^{2}) - E(\bar{x}^{2})$$

$$= \frac{1}{n} (\leq (r^{2} + \mu^{2})) - E(\bar{x}^{2})$$

$$= \sigma^{2} + \mu^{2} - \varepsilon(\overline{x}^{2})$$

$$V(\overline{x}) = \varepsilon(\overline{x}^{2}) - (\varepsilon(\overline{x}))^{2}$$

$$= \varepsilon(\overline{x}^{2}) - \mu^{2}$$

$$V(\overline{x}) = V(\frac{1}{n} \leq x_{i})$$

$$V(\overline{x}) = V(\frac{1}{n} \leq x_{i})$$

$$V(x_{i} + x_{2}) = V(x_{i}) + V(x_{2})$$

$$V(x_{i} + x_{2}) = V(x_{i}) + V(x_{2})$$

$$V(x_{i} + x_{2}) = V(x_{i}) + 2 c_{0} v(x_{i}, x_{2})$$

$$= \frac{1}{n^{2}} \bigvee_{i=1}^{n} V(x_{i})$$

$$u(x_{i} - b)^{2}$$

$$random \Rightarrow independent$$

$$= \frac{1}{n^{2}} n \sigma^{2} = \sigma^{2}/n$$

$$v(x_{i}, x_{j}) = 0$$

$$v(x_{i}, x_{j}) = 0$$

Doubts

(1) What is the difference between an estimator and a statistic?

From stats. stackexchange. com:

* A <u>statistic</u> is a function of a sample

* An <u>estimator</u> is a function of a sample related to some quantity of the distribution.

some property, usually unknown

A statistic is not an estimator: An estimator is a statistic
 with something added. To turn a statistic into an estimator,
 you simply spell out which target quantity you want to
 estimate.

	¥	Differe	nt	estim	ators	ba	sed	ON	the	som	e 81	atistic				
	Ŋ	sampl	e me	an	ûs	0 <i>n</i>	esti	matos	fo	20	listrib	ution	(popi	lation	me	an:
		zero	bias													
	2)	sampl	e m	ian	as	an	esti	imator	tor	di	stribu	ìon	varia	nce :	usua	lly
		biase	ed .													
	3 Ja	m 2	025													
D	Whe	at	U	expec	tation	2										
	Wh	at	18	srand	om s	sample	2	Is 'i	t Hh	e s	ome	as	rar	dorn	Vari	able?
	Wh	at a	re	varia	ne	and	⁄ (/o 1	Varian	ce?	→ PI	hysical	sign	fican	æ		