2024/10/29 - Data Structures * Graph terminology * BFS , DFS \rightarrow Read the obsidian notes \bigcirc Problem $22 \cdot 1 \cdot 3$: Compute $G^T = (V, E^T)$ from $G, E^T = \{(u, v) \in V \times V\}$ (v,u) E E Y let G^{T} adj be the adjacency list of G^{T} for each vertex v E G.V for each vertex $u \in G \cdot adj[v]$ // (v, u) $\in E$ $\parallel (u, v) \in E^{T}$ G^T. adj [u]. push_back (v)

22.1.8 <u>Hash table</u> instead of linked lists

Minimum Spanning Tree = spanning tree of min weight.

How to find Minimum Spanning Tree?

Knuskal's AlgorithmInputG = (V, E)V = nV = n<t

(er, ..., e_m) \longrightarrow $W(e_i) \leq W(e_{i+1})$

② T ← \$\$ /* T stores edges of MST */

Case 1.2: Tope contains a cycle Why OPT prefer fi over gi — the only possible reason is adding gi will introduce a cycle 92 93 94 93 311 11 11 11 11 11 $f_{1} = g_{1}$ $f_{2} = g_{2}$ $f_{3} = g_{3}$ Let f1, f3, f4, f9, f11 f4 make cycle with gi gi '`, f7 then fn 91, 93, 94, 99, 911, 9i make a cycle

Case 2	: Why The cycle	Gi > fi did kevs only reason	KAL not could	pîck Be	fì { g1 ,) , (]i-1 }	U f;	forms	a
Proof of Lemma:	But Corre This	<u>ctness</u> — M algorithm	2: Creates	y o tr a spa	nning	tree	•			
Lemma :	This	algorithm	yields	a spo	inning	tree	of	minimu	im	

 \rightarrow Guarantee $w(f) \gg w(e)$ (: we are adding edges in increasing order) \rightarrow Remove f $\omega(T \setminus \{f\} \cup \{e\}) \leq \omega(T)$ •_____ Î Ze

f	ind:															
	Suppos	e	edge	(·	V2, V	3)	ั้ง	add	ed —	→ cy(le L	olf.	no tico	0		
			Retur	n tr	ue	f	V2,	V3	ane	form	ing the	e ed	ge b	s elong		
				ìn	sam	l	set				to 1	he s	U Same	set)		
	Unior	rtind	(data	stru	icture	2									
	Knisk	al's	alg	orithm	<u>, </u>											
	$(\mathbf{\hat{I}})$	ſ	← ⁽	ф												
	2	S	= -	{v1 }		\	Vn Z									
	3	Sørt	the	e	dges	Ī	ima	reasing	g order	of	weigt	rts				
					V	l1 <		· <	em		z	0 (m	log r	n)		

(a) For i=1 to m and while
$$(\# edges (T) < n-1)$$

do ξ
let $e_i = (u, v)$
if $(\operatorname{Find}(u) \neq \operatorname{Find}(v))$
then $T \leftarrow T \cup \{e_i\}$
Union $(\operatorname{Find}(u), \operatorname{Find}(v))$
 ξ
of times union sums $\rightarrow n-1$ $O((m-1) \cdot U)$
of times find sums $\rightarrow 4m$ $O((m) \cdot F)$
Total summing time : $O(m \log m + (n-1)U + m \cdot F)$
 $O(m \log m + (n-1) + m \log n) = O(m \log n)$

Since key(b) is now the smallest value in the priority queue, we visit node b. Because p(b) = a we add edge (a, b) to the set A. We then update the keys and parent fields of nodes that have edges connecting to b. Thus we set key(c) = 8 and p(c) = b.

<u>Claim:</u> For any cut (S, S), The minimum weight edge should belong to MST S <u>Remark:</u> More than one edge of cut can also be part of MST. But minimum veight edge must be bart of MST S S 9 <u>**Proof**</u>: By contradiction, consider a cut (S,\overline{S}) T = MST that does not contain edge e. $T \leftarrow T \cup \{e\}$ e := smallest edge weight across the partition Addition of e creates a cycle (say C)

	edges	of	weigh	t 1	i, 5	we	d to	be	Teme	wed	from	- h	lap.				
	edges	of	Weig	ht	8,9,	3	need	to	be	ad	ded	ÌM	hea	p			
.							10					10					
At E.	any	Por	nt,	heap	mai	intains L	s th	e e	dges	acr	1085 ·	the	parti	tion			
1 61 QAA	ever	add ve	Som	. e	Jng door	ц 	head	proces	(We	(lemi	Ne	Some	eag	&		
					gus									o Revisi	2 in:	section	
Over	all -	time	comp	lexity	2	$\left(\sum\right)$	deg (v))	log m	+	ณ (D(1)		and	t dele in	tion heap	
				•		(o		,		\							
					=	0(n +	n u	og m)							

