

Theorem: The height of AVL tree of n nodes is O(logn).

(hoose i st
$$h-2i = 2$$

 $n(h) > 2^{h_2-1} n(2)$
 $n(2) = 2$
 $n(n) > 2^{h_A}$
 $2 \log (n(i)) > h$
 $\underline{m} \qquad [h = O(\log n(h))]$
The height of AVL there is $O(\log n)$.

* Inserting a mode in AVL tree changes height of some nodes in T. * Only those nodes that are ancestors of v. * Height balance property can violate at those nodes. (ancestors of v) * Traverse up toward noot from v until we find a a vode where height balance property is violated (Z) Let Z have child y and grandchild x

Time complexity insesting like BST $O(\log n)$ \bigcirc 2 identifying x, y and Z $O(\log n)$ O(1)(3) rotation (single / double) Deletion M * het w be the deleted node. * het Z be the first imbalanced node in the path W to root. from let y be the child of Z with larger height. N be the child of Y with larger height * Let

be left/right child of Z Y com be left might child of y Х an Case (i) imbalanced (2)(h+2)Reletion happens at Ty, h(Ty) is (h+ 1) reduced from h to h-1. $rac{1}{1}$ $rac{1}{1}$ $rac{1}{1}$ Z is imbalanced => hz(y) = h+1 (J) h X has larger height than T3 173 h or h-1 so $h_T(n) = h$ W rotation (y, 2) Since $h_{\tau}(T_L)$, $h_{\tau}(T_2)$ /T2 can be either (h-1) or h-1 or h-1 orh2 (h - 2)both cannot be h-2

