2024 08 20 - Pata Structures - Week 04

Perfectly random mapping \rightarrow space complexity = $O(121 \log m)$

o add example

$$h_a(k) = \left(\sum_{i=0}^{r-1} a_i k_i\right) \mod m$$

Static Dicti	mary	Problem									
Given	n kej	rs up	ront		brepan	re a	data	struct	une t	hat	
facilitates	fast	search	opera	tions.	1 1						
(No	further	insertion	./ dele	etion	need	ed)					
WLOG	assume	that	there	ĩ	an	erde	ring fo	e th	e key	8.	
<u>Naive soluti</u>	<u>m</u> 6 :				Space	Complex	city	Time	Comple	xity	(search)
D store key	s in so	rted order	,		0	(n)			O(log	n)	
1 Iniversal	haching	,			0	(m ²))	

$$\begin{array}{c} \# \text{ ef collisions} = \left(\sum_{i,j} I_{ij}\right) \cdot \frac{1}{2} & i, j \in [n] \\ \\ E\left[\sum_{i,j} I_{ij}\right] = \sum_{i,j} E\left[I_{ij}\right] \leq \sum_{i,j} \frac{1}{m} < \frac{n^2}{m} \\ \\ \\ Choose \quad m = 10 \ n^2 \\ \\ E\left[\sum_{i,j} I_{ij}\right] < \frac{1}{10} \\ \\ \end{array}$$

Double Rashing - Use 2 Lash functions by & h2 - h. (k) gives the position of key k in bash table - hr(k) gives step comt for key k. - In linear probing $h_2(k) = 1$

Double Hashing insert (k) if (table is full) error probe < h(k), offset < h2(k) while table [probe] is occupied probe < (probe + offset) mod m Search and delete is same as linear prolong teash table ____ m ____ シ helk) must be relatively prime to m -> every location of hash table is accessible.

 $\alpha = 1/2$ Ex: 1/2 empty 1/2 full (h1+h2) > randomised effect P(empty slot for) = 1/2 new key expected no. of unsnaersful jeights for unsnaersful georar Unsuccessful search > even when given key is not present in the hash table

