

there to move minimum stuff from main memory to cache work of a computer architect not discussed here. How to move minimum no. of pages from secondary momory to main memory -> B^t-trees one option * Deletion in B^+ - trees. \rightarrow If on deletion min no of nodes $< \left\lfloor \frac{N-1}{2} \right\rfloor$ try to shift from sibling \rightarrow if sibling had exactly $\int \frac{N-1}{2}$ children, merge nodes ---- update parent (recursively)

 \rightarrow Deletion may decrease the height. -> Insertion may increase the height Understand examples first, then code. Hashing \rightarrow Indices are not sosted. \rightarrow Even in B⁺ - trees, you need to search 3-4 pages -> theap file ~ no ordering

Static Hashing - Bucket - Kash file organization
- Kash function Example of Hash file organisation 8 buckets hash function: - see slides

-> Ideal hash function is uniform and random o See slides Handling Bucket Overflows 1) Insufficient buckets bucket based on salary, 2) Skow in distribution of records what if many records have - Hash function inefficient same salary? Overflow chaining () Open hashing 2 Closed hashing

thash indices - Hash can be used not only for file-organization, but also fos index-structure creation. 25 Feb 2025 — Extra lecture Static hashing -> predecided buckets If all buckets are full, you will need to chain. create more buckets · Sce shides

(RM) Raghuramakrishnan book for some parts from now \rightarrow short and to the point RM Extendible Hashing Greate one more bucket (not chained) and modify the hash functions in a way that old buckets are pointed in the same way 2 bits to 3 bils • See Slides

Cost Model B data pages with R records per page fetch sec men to main men Avg. time to read or white a disk page is D Avg. time to process a record is C CPU processing, main mem -> Cache In hashed file organization -> time required to apply hash function = h on 5 operations Comparision of 3 file organisations

cost of seasching + C + D The amount Delete : compared to D can be ignosed. Sorted file Scan: B(O + RC)Search binary search $D \log_2 B + C \log_2 R$ → (minimum) only if qualifying record's key is candidate key If not Dlog2B + Clog2R + cost of reading all qualifying records in seq. order

same as search with Search with range selection : -> equality selection Insert Costly Search search and + move $2 \times (0.5 B (D + RC))$ half on ong. Delete: same as insert. search cost + B(D+RC)

tlashed files Scan: $1.25 \times B(D + RC)$ pages kept at about 80 percent occupancy Buckets may overflore -> consider extra space Search with equality selection: If (which bucket to retrieve) + D (retrieve bucket + O. 5 RC (if bucket is not sosted) + (log2R)C if sorted

Search with range selection: bad: 1.25 B (D + c) minus H page in main memory memory Insert: cost of search + * You need extra storage in hash. Summary table In a real DBMS, a file is almost never kept fully sorted. -> Periodic reorganisation

Filmra Ladakh before finishing Visit BTech 250 kin/day every thing K2K Ø uncertain after from North-East External Sosting $\left(22\right)$ Bt trees leaf node = data entries or sequence set other nodes = index entries

is quife large, savings are exponential. Because B $2N * \left(\int \log_{B-1} N \right] + 1 \right)$ Table -> nice N = 1000000000 2 only 4 passes B = 257More modification : Double buffering

Using B^t trees for external sorting Book says beneficial Sir says no point you an ean directly I Unclustered index - useful when you want a small Not much benefit part sorted. Yon will have to read one page multiple times -> not always good (if query = age < 10 and results are only 10% of records

Evaluat	ion (on	Kelai	onal	Opera	1622						
, r	teresting	5						S.	\$:			
								ⁿ	seless			
	RM :	Hash	i ⁱ n	dices	Can	be	cluste	reel	or	unc	lustered	[
Access	Dat	hs										
		select	*	fron	. . ,	wh	ere	age	tz.	~~		
		(1)	file	scar	(a	an b	e dor	ne i	n all	L case	هر	
		(2)	an	index	plus	>	match	ung	sele	ction	condi	'h'ons

Selection operation Select * From Reserves R where R. mame = 'Joe' → fetch into main mem Scan row by row No Index, unsorted data No Index sorted data -> binary search > clustered or not? refrieve next page 2-3 pages Bt free index _____ flash Index, Equality Selection not good for range , R. attr op value (R) select * from R ; = where condition where condition

different from hash file organisation Hash index is Alternative (2) in RM Clustered or not? if chustered hash General Selection Conditions

Index on {age, name} > Bt tree o Multivalued Hash index 26 Feb 2025 Option () Scaring Option (2) Use in dex Select * from Reserves R where $R.v_{name} = 'Joe'$ and R.bid = rOR. Vnoume = Joe A R bid = r (R)

Conjunctive normal form $(A \vee B \vee C) \wedge (D \vee E \vee F)$ $(bid = 5) \wedge (roll = 7) \wedge (age > 5) \longrightarrow CNF with no disjunction$ CNF and Index matching If we have hash index on search key (mame, bid, sid >

① mane = Joe ∧ bid = 5 ∧ sid = 3
② mane = Joe ∧ bid = 5
$$\bigotimes$$
 you have to go
for scanning
(for hash index)

B⁺ - tree ~ ① and ② both can be searched

[5] 7] 7]
③ ignose sid

Theome = Tie
$$\Lambda$$
 bid = 5 Λ sid = 3 B^{+} tree $m \langle a, b, c \rangle$ Even if we have a search $\bigcirc a = 5 \land b = 5 \land c > 5$ key on $\langle bid, sid \rangle$ we'll $\bigcirc a = 5 \land b = 5$ still get benefits $\bigotimes a = 5 \land c = 5$ $\bigotimes b = 5 \land c = 5$ $\bigotimes b = 5 \land c = 5$ Ubing both B^{+} tree index and heach index
on $\langle bid, sid \rangle$ $\bigcirc a = 5 \land sid = 3$ $day < - \land bid = 5 \land sid = 3$ Take
form thesh index
pages from B^{+} tree

To implement projection: - Remove unwanted attributes - Elinivate any duplicates T (temporary) D Sorting 2 Hashing Projection based on sorting (1) M pages scan + T pages vorite Sort T pages (2)(3) Scan sorted Tesult

Sorting versus Hashing - Read from book Join operation Select * from Reserves R, Sailors S where R. sid = S. sid

General method → Start with only a file and think of how you will write a C program -> Try modifying your solution