
 

iii.it
Ttaionsfor describing

computations to people

and to machines

program glorifiedtranslate

translate into a

form which can be systems
executed by a company

software

that do
this

How to design and
compilersimplement compilers

few basic ideas

Principles here will be applicable
at

many
other places in CS



chap introduce diff forms
of language translators

give a high level overview

of a typical compiler

trendsinprogramming
languages

Rel between Compiler Design

and CS theory

TangDcessorst
source language

coms
important role

detect errors
during

translation

target language and report



Interpreter another kind of language

processor

instead of producing target program
as a translation an interpreter

appears to directly execute the

operations specified in the
source program on inputs

supplied by user

T npee output

at

Compiler Interpreter
produce machine

Usually
languagetarget faster

mapping

than puts
program



Interpreter can however provide
better error diagnostics

because it executes source

program
statement by statement
has input

Example Java language processors

combine both compilation and

interpretation

sourceprogram It
Bycodes compiled

Translator on one machine

can be interpreted

on another
intermediate

program ñle output
bytecode input



Fast compilation Just in time

compilers
for Java

Translate bytecode

into machine

language immediately

before they run

the intermediate

program to

process the

input
Other

programs may be required to
create an executable target program

stored program may be stored

into modules sep files
collecting

man
Preprocessed

source program

expand

in source

language
statements



Modified source program

compiler

may produce assembly pydh Ias

Language program
as

easier to

op debug

Asseterb

tgustation
Relocatabletable

machine code
Compiler

add machine code low level instructions that
placeholder

orrelativey
CPU understands

address

a

can be moved to a different

memory address

linked with diff libraries



large programs are compiled in

pieces relocatable machine code

linked with other
code

relocatable object tilesthat
rung machineand library files

Linker resolves memory addresses
code in

Lotader
puts together

one file
may referall of the to a

executable location in
object files another

file

A compiler that translates

HLL another HLL

is called source to source

translator



AduatgestoJ

C is lightweight
using C as

a target for
source to

source

C is low level enough to be close

to the metal but still high level

enough to be portable readable

and compatible with standard toolchairs

Portability Touchangmatute
write your compiler

ecosystem
once and let

many debuggers

gec and clary profilers analyzers
etc

do the platform you instantly get
specific optimization to piggyback

decades of tooling



Interoperability

easy
to link inheritance no

libraries exceptions no

runtime type info

Etget
way more complex

less predictable performance
Toolchains and ABI compatibility can

be trickier

IF
What kind of languages would benefit

from targetting Get instead of C



Tinggffle management

keep track of labels
LOOP

141
x2 3

map them to memory
addresses

Instruction translation

machine
MImenttendable code

machine code

Address resolution relocation linking



The structure of a compiler

Up to this point
maps

source
compiler

semantically shining

program equivalent

target program

front backend

analysis synthesis
breakup source constructs the

program into desired target
constituent

pieces program from
and impose the IR and
grammaticalstructure the symbol table

anytheme
create intermediate

representation of
source program



If analysis part detects that the source

program is either syntactically ill formed

or semantically unsound

provide informative messages

for user to take
action

Analysis past collects info about

the source program and stores it
in a DS called

symbolftable
passed along

with IR

to synthesis

past
Compilation operates as a

sequence of phases each of
which transforms one representation of



the source program into another

Typical decomposition of phases

backend
character stream

symfo

targetmachine wattle
prode

then
stream

frontend

targetmache syntataly.fr
1

Creator syntax tree

semantics
IR

iIeItcoa
ñ IR generated



Symbol table is used by all phases
information of the compiles

about
source program

Some compilers have a machine

independent optimization phase b w

frontentand
backed

perform transformations on the

IR so that backend can

produce better target program

Machine independent
one or the

other optimizations

Made dependent may
be missing



lexicalanalysis
aka scanning
reads stream of characters making

up the source program and

groups the
characters into lexemesc

For each lexeme LA produces as

output a token

token name attribute value

points to an

passed to entry in
the symbol

syntax analyses table for
this

token name 7
abstract symbol

token

used during
syntax analysis

Information from the symbol table is

needed for semantic analysis and



code generation

Ex source program contains

position initial rate 60

could be grouped into the following

lexemes and mapped into the following

tokens passed on to the syntax analyses

position

lexeme mapped to a token

id 1

Tsyndsol table
abstract
symbol entry for
standing position
for
identifier

name
symbol table entry for identifier type

holds info about the identifier



assignment symbol

lexeme mapped into the

token

needs no attribute value

we could have used
any

abstract symbol for token
name such as assign

but for notational convenience
lexeme itself becomes

the name of the
abstract symbol

lexeme mapped into the

token id 2
points to
the STE
for initial



t

lexeme token

rate Lid 3

60 cos Thusly
lexeme

4 points
to symbol
table for

Blaakating
discarded

manby LA
representationlexemes
of integer

id 1 id 2

7kid 3
Chapter 2

260
chapter3

building
Lex Analysers



Yetta
Parsing
Uses the first components of the
tokens produced by LA
to create a tree like Intermediate

Representation IR
depicts the grammatical structure

of the token stream
position initial Symboltable

rate 60

was

Lid 1 Sid 2
id 3 560

SyntaxAnalyser

cid.nl id stns so

I



Semantic

Analyses

Intermediate code generator

Code optimizer

Code generator

Tree shows the order in which

operations

must
be performed

consistent

with the usual

conventions of
arithmetic



Subsequent phases use the grammatical

structure to

help analyze the
source

program
and generatechappy
target program

CFG to specify

grammatical
structure of

programming

languages

discuss algorithms

for constructing
efficient syntax
analysers



Semanticanalysis


