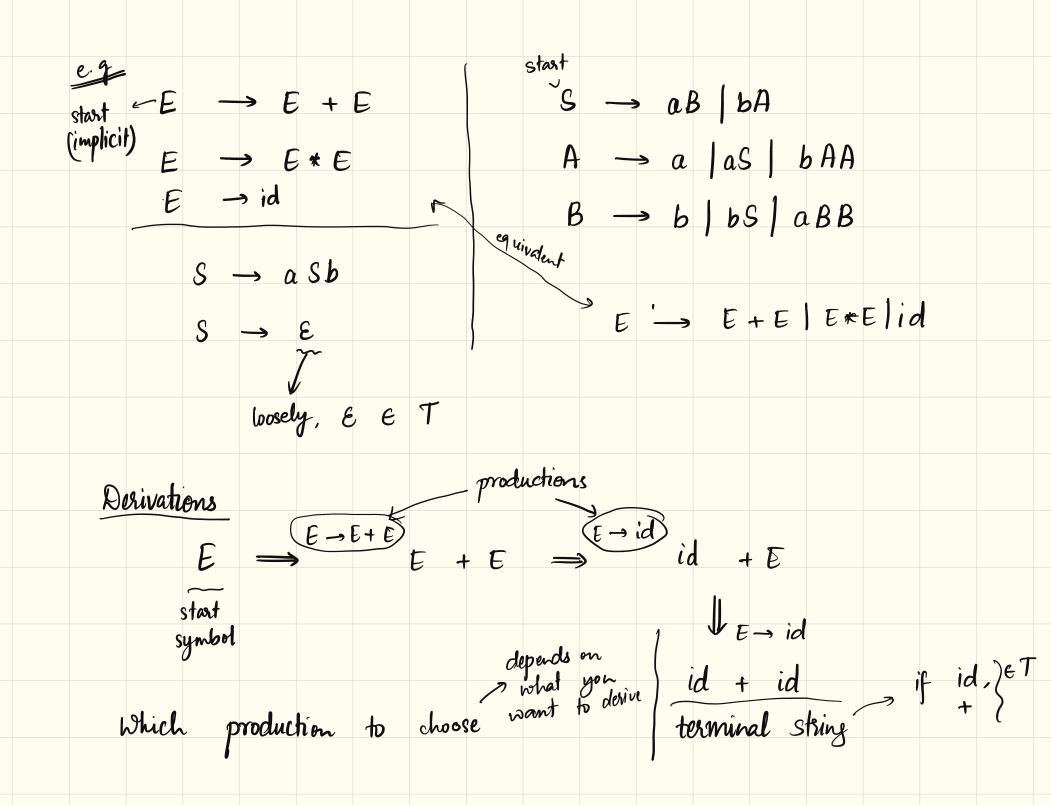
28 Apr 2025 - Compilers - I - Week 05

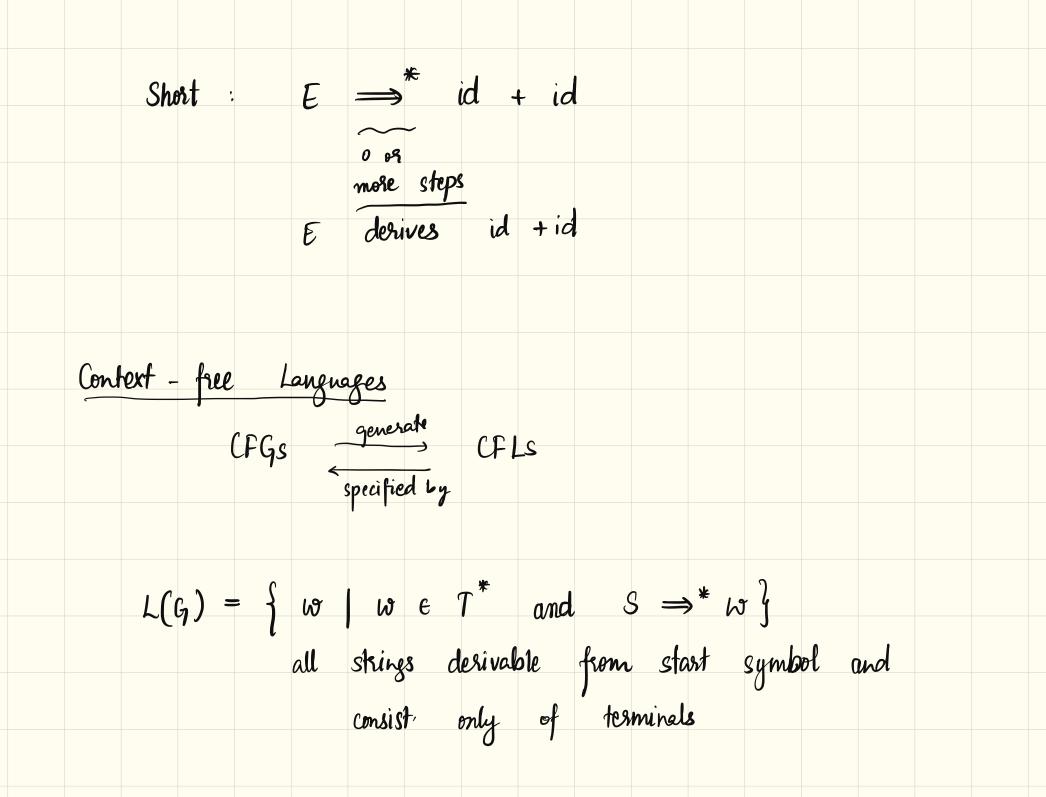
Context - Free Grammars, Pushdown Automata and Parsing Outline (?)→ Syntax analysis -> Context-free grammars <- basis of specification of programming languages \rightarrow Parsing CFG >>> pushdoron automata > Bottom - up tool VACC ~ parser construction

Grammars \rightarrow used for precise description of rules e.g.: Rules stating how functions are made out of parameter lists, declarations and statements. expressions, etc. \rightarrow Certain types of grammars parsers can be automatically constructed from the grammer -> Parsers / Syntax Analysers are generated for a a particular grammar input _____ vACC _____ ontput grammar _____ parser

subclass of languages CFG \rightarrow ____**>** regular cfg context-sensitive type - 0 etc. context - free languages char skean Lexical analyser CFGs specify Parser \rightarrow \rightarrow verifies that the string of tokens for a program in that language can be generated from that grammar

-> reports syntax errors -> conskuct parse tree representation not always necessary -> usually calls lixical analyzer to supply (1) tokens when necessary. \rightarrow hand written or automatically generated. -> CFG tokens of lexical analyses Context = Regular Langrages free G = (N, T, P, S) finite finite set of set of non-ferminals finite Set languages JLexical Analys J Parses Finite State Antomata Pushdown automata non-ferminals $\begin{bmatrix}
 of production / rules \\
 A \longrightarrow \alpha \quad A \in N \\
 \alpha \in (N \cup T)^*
 \end{bmatrix}$





$$S \rightarrow OSO$$

$$L(G) = palindromes ever 0 and 1$$

$$S \rightarrow 1S1$$

$$S \rightarrow 1$$

$$S \rightarrow E$$

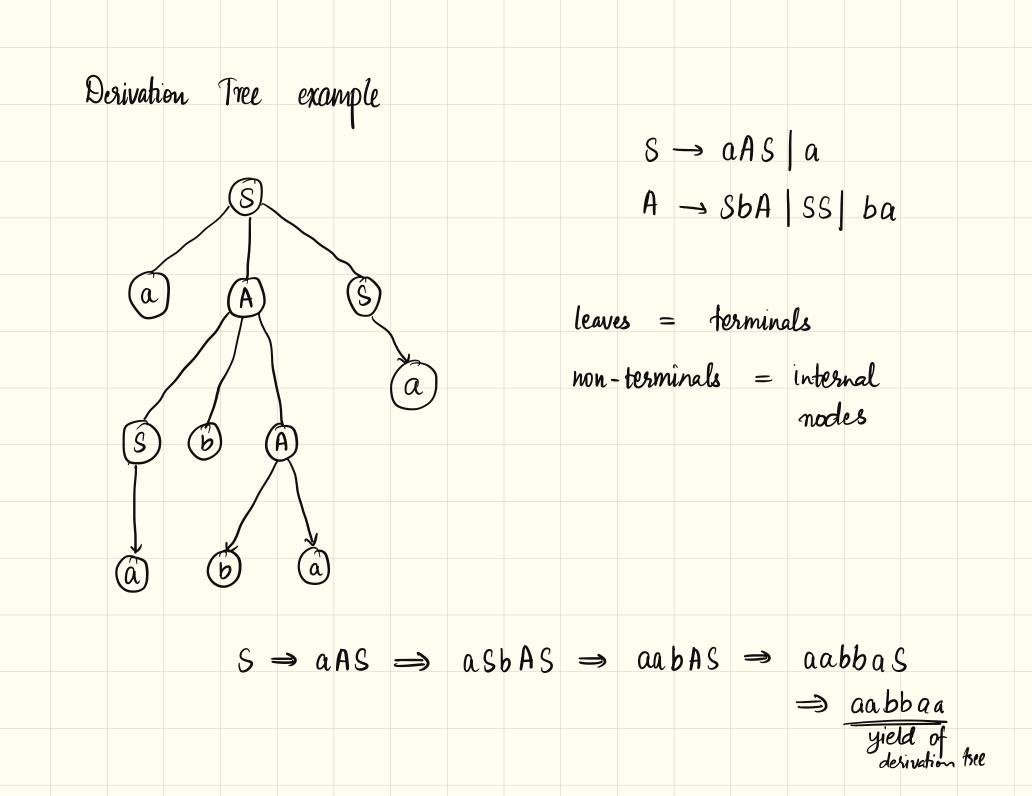
$$Sentential form$$

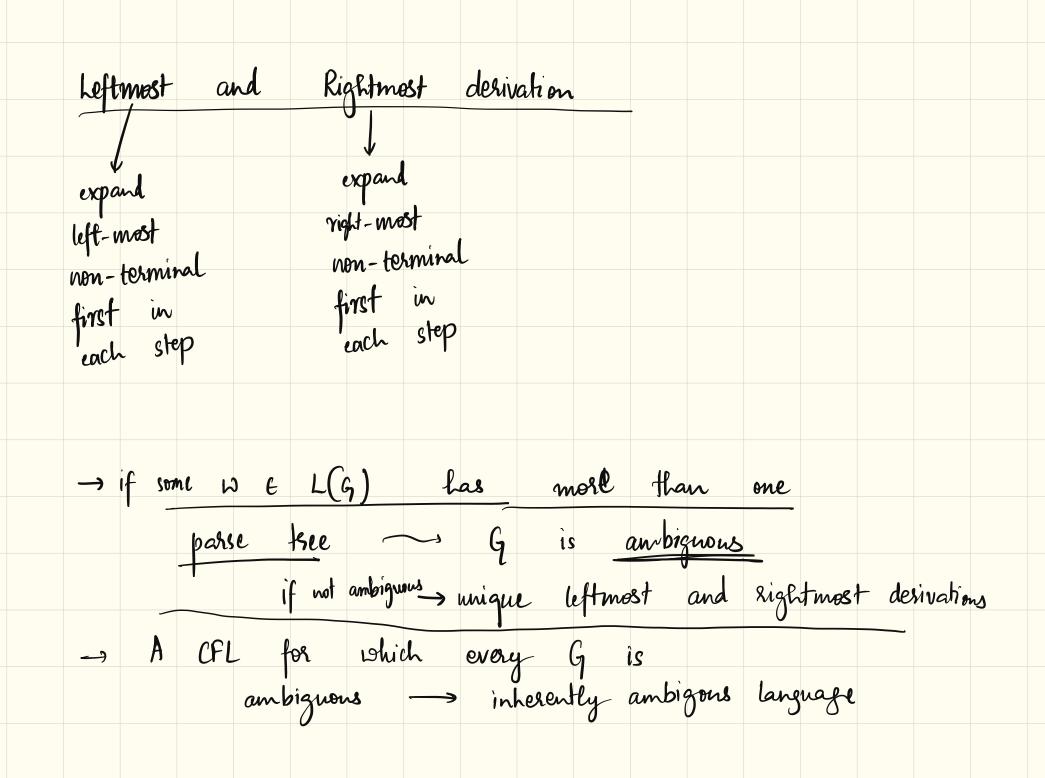
$$A string \alpha \in (N \cup T)^{*}$$

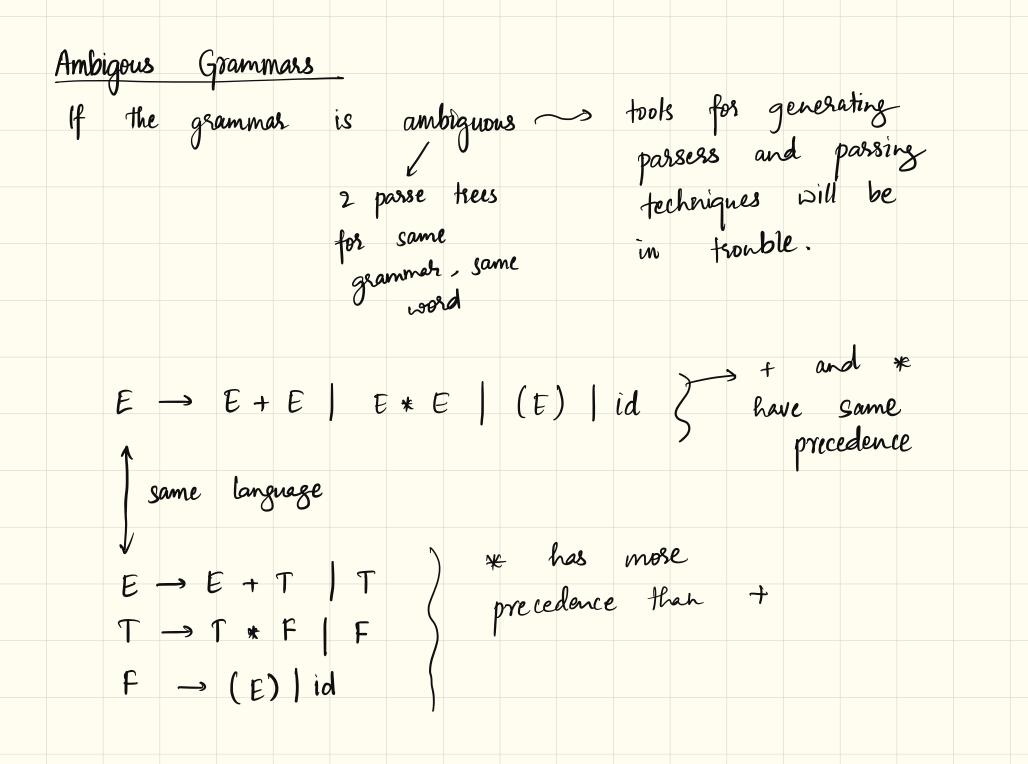
$$is a sentential form if S \Rightarrow^{*} \alpha$$

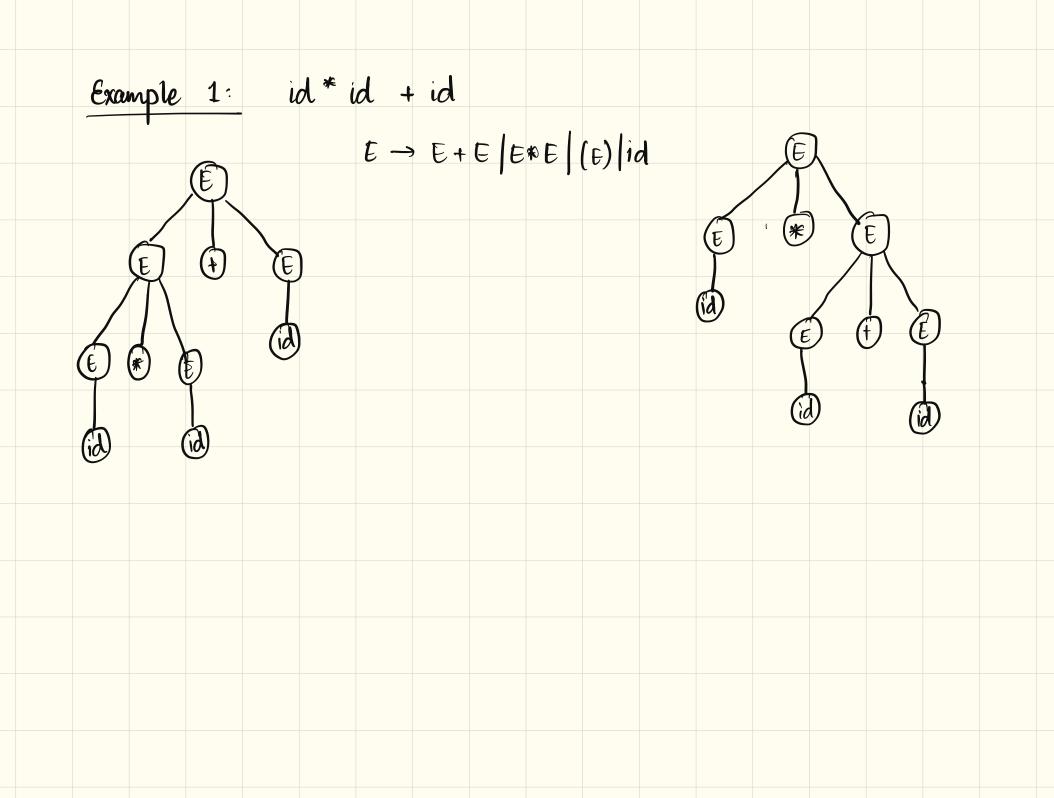
$$sentence \rightarrow only terminals$$

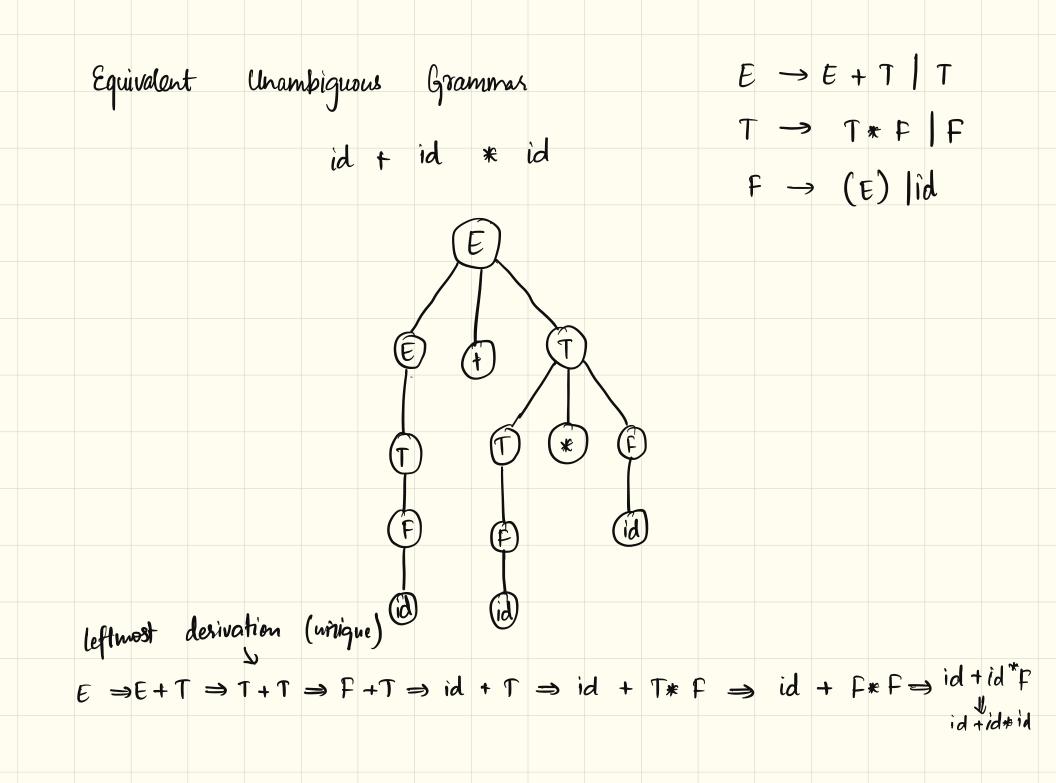
$$G_{2} \equiv G_{2} \iff L(G_{2}) = L(G_{2})$$









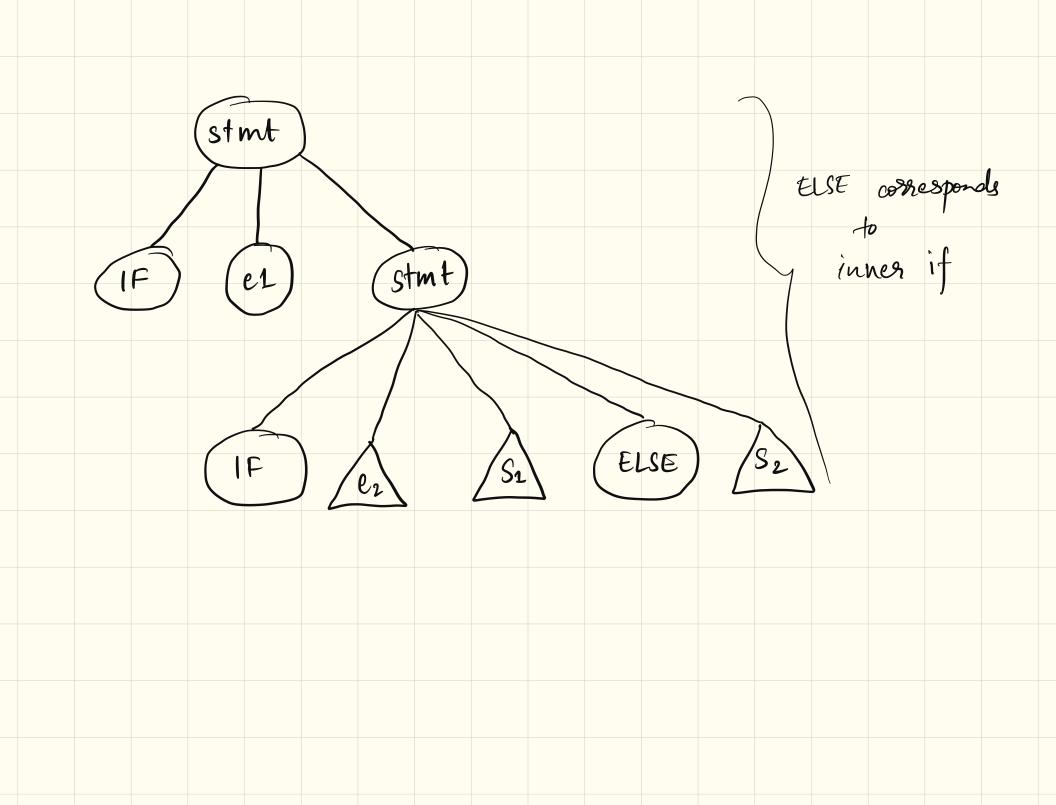


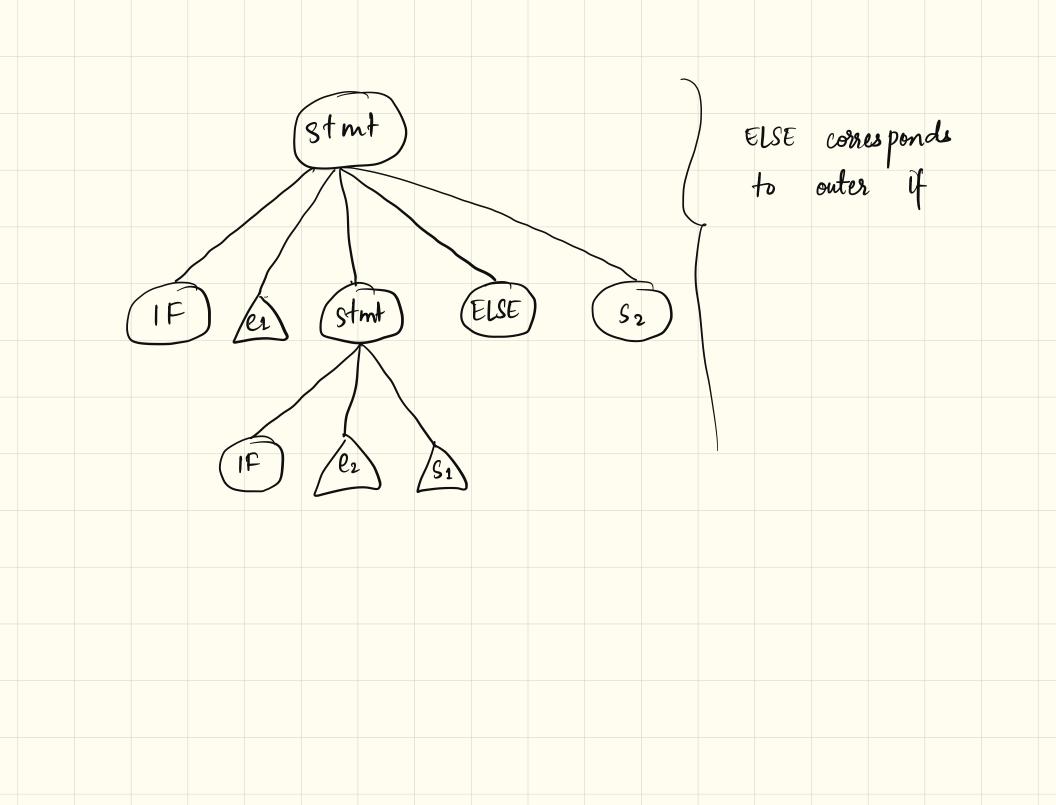
Trying * first leftmost desivation $E \Rightarrow T \Rightarrow T \star F \Rightarrow F \star F \Rightarrow (E) \star F \Rightarrow (E+T) \star F$ cannot go to (T + T) * F no such sule $(id + F)^*F \leftarrow (id + T)^*F \leftarrow (F + T)*F$ ↓ $(id + id)^* F \implies (id + id) * id$

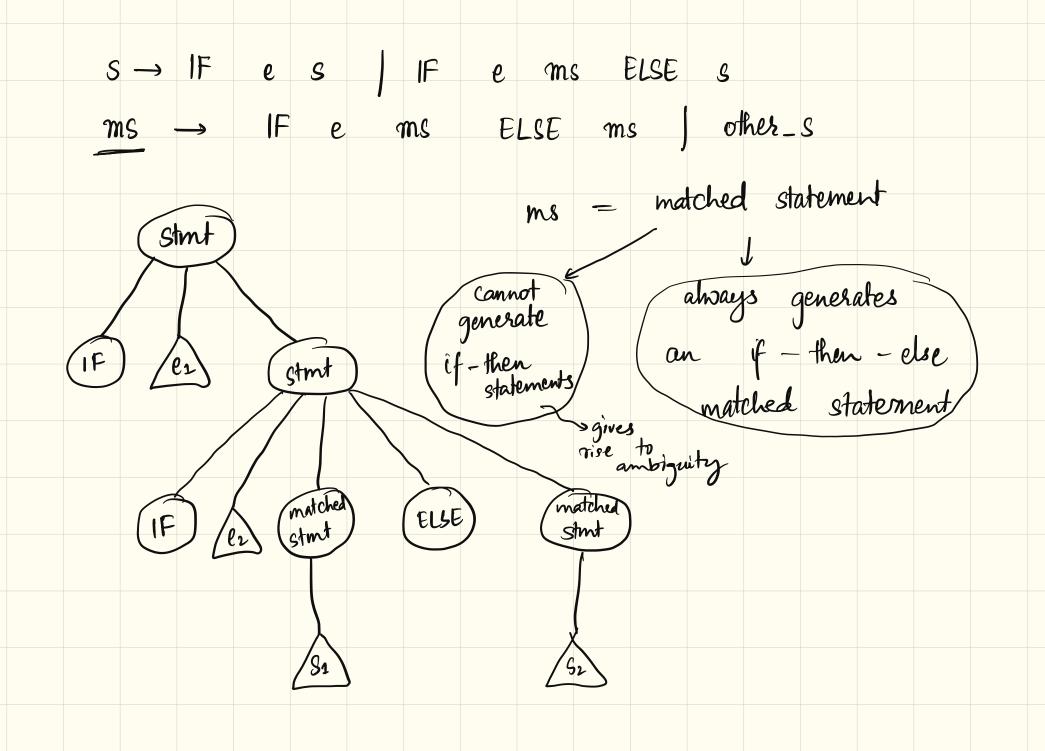
Ambiguity Example 2

stmt -> IF expr stmt | IF expr stmt ELSE stmt | other_stmt ambiguous stmt -> IF expr stmt | IF expr matched_stmt ELSE stmt matched _ stint -> IF expr matched _ stint ELSE matched_stmt | other_stmt equivalent mambiguous (example later) * No algorithm exists -> to convert ambiguous grammars to unambiguous

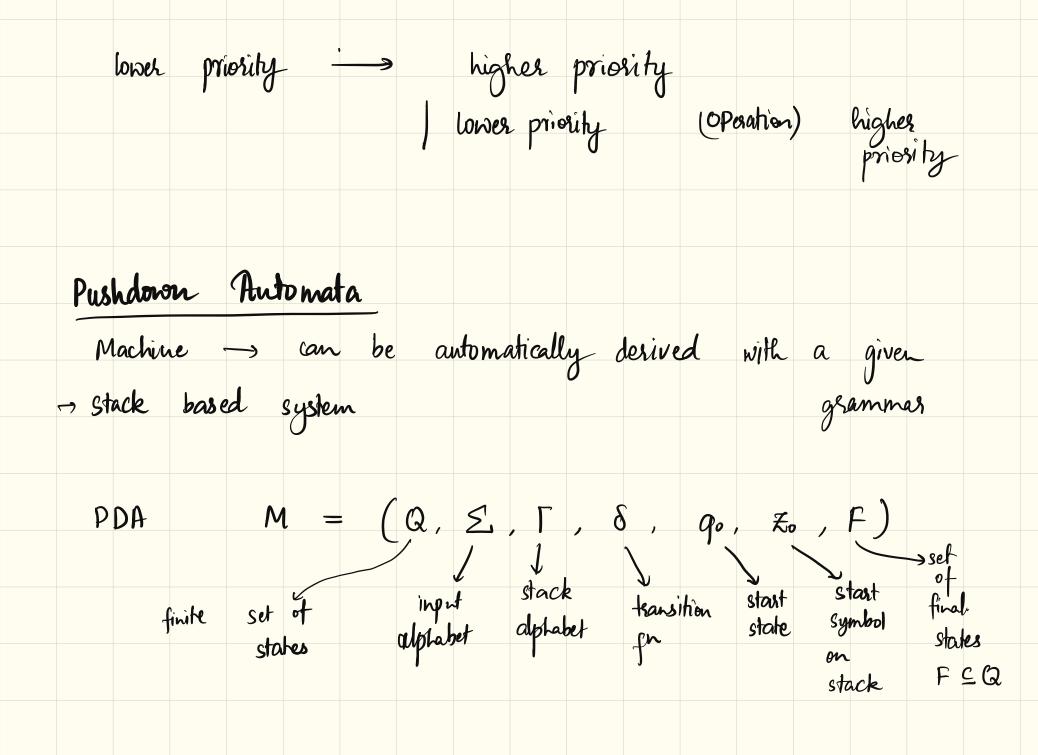
 $L = \{a^n b^n c^m d^m \mid n, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n, m \ge 1\}$ inherently ambiguous no grammar that is not ambigous Example 2: Two parse trees for the sentence IF el IF el s1 Else s2

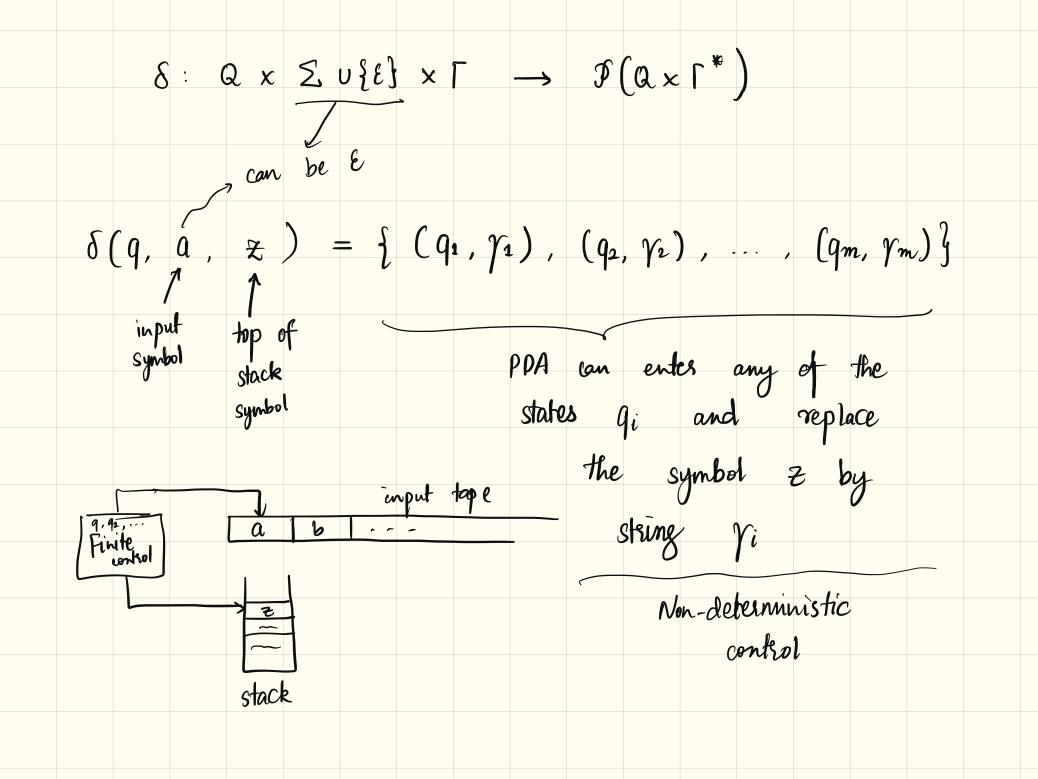






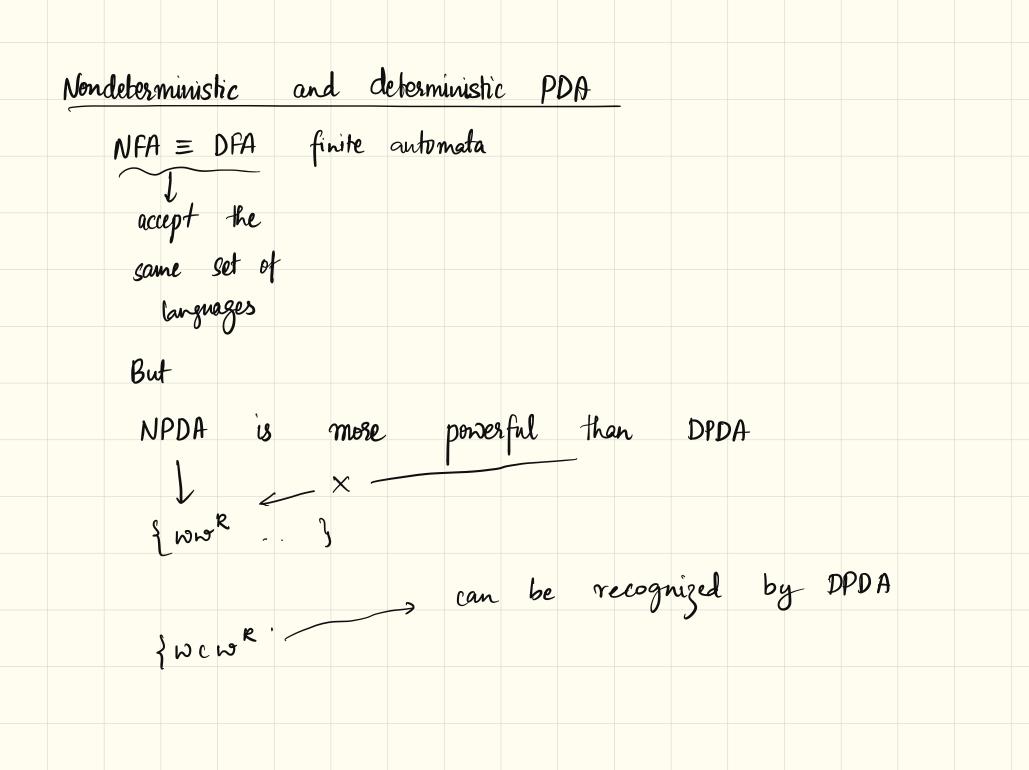
Fragment of C grammar (Expressions) logical_or_expr logical _ and _ exp logical_or_expr OR_OP logical_and - expr precedence { or is at lower level AND is at higher level logical _ and _ expr _ > equality _ expr logical_and_expr AND_OP equality expression & & \succ = =





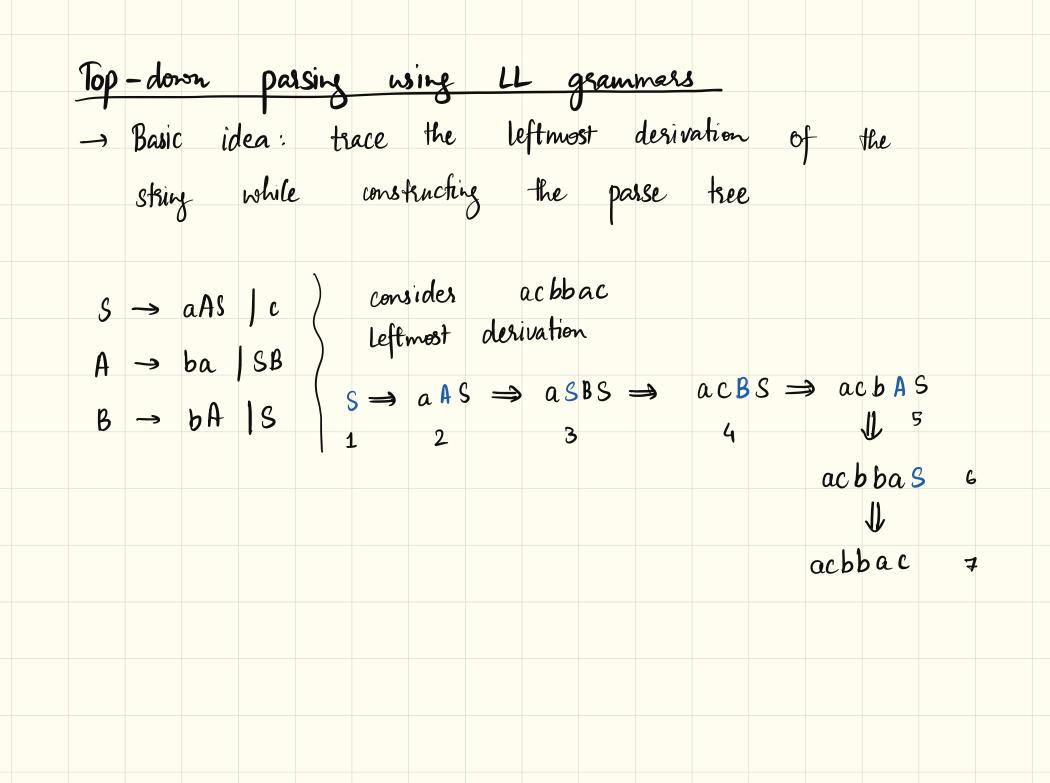
-> leftmost symbol of γ_i will be new top of stack $\gamma_i = abc$ ta new top L(M) ~~ language accepted by M by final $\frac{\text{state}}{L(M)} := \left\{ \begin{array}{ccc} w \end{array} \right\} \begin{pmatrix} \text{stast} & \text{stast} & \text{stack} & \text{stries of moves} \\ \left(\begin{array}{c} q_{0} \\ q_{0} \\ \end{array} \right) & \left(\begin{array}{c} q_{0} \\ w \\ \end{array} \right) & \left(\begin{array}{c} q_{0} \end{array} \right) & \left(\begin{array}{c} q_{0} \\ \end{array} \right) & \left(\begin{array}{c} q_{0} \end{array} \right) & \left(\begin{array}{c} q_{$ for some p e F and r e F* b

N(M) ~> language accepted by M by empty stack F becomes isselevant we usually set F=0 here $N(M) = \{ w \mid (q_0, w, z_0) \vdash^* (p, \varepsilon, \varepsilon) \text{ for some}$ peQy Part 2 $L = \{ ww^{R} | w \in \{a, b\}^{+} \}$ non-deterministically guess middle of input



In practice we need DPDA, since they have exactly one possible move at any instant. → Our parsers all are DPDA Parsing Parsing is the process of constructing a parse tree for a sentence generated by a given grammar. using a DPDA f some actions

no restrictions on language and the form of grammar \implies parsers for CFLs require $O(n^3)$ time (n = length of the string parsed) DP * CYK algorithm ~ * Earley's algo Subsets of CFLS $\longrightarrow O(n)$ time we are interested in these O Predictive parsing on class of grammars called LL(1) uses top-down parsing 2 Shift - Reduce parsing grammars using LR(1) grammers (bottom - up)



-> start from the start symbol, predicts the next start from the sum of through production used in the derivation. Itraugh parse tables (stored) -> Next production to be used in the derivation is determined using the next input symbol to lookup the passing table (look-ahead symbol) ensures no slot in the -> Restriction on the grammar (that helps us get parsing table confoins more than one O(n) time) production. > if more than one, we cannot decide voluch to use next

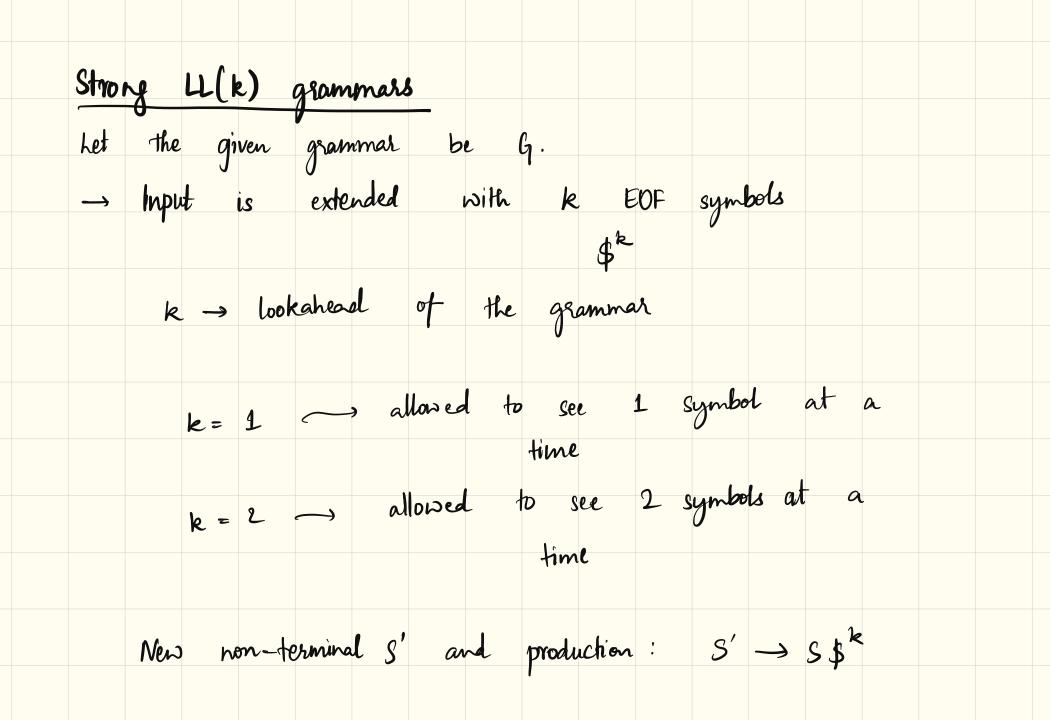
Passe table construction > if two productions become eligible to be placed in the same slot ______ grammar is declased unfit for predictive passing. LL(1) parsing algorithm Input Initial configuration: \$ = end of file markes stack = S Parser S t a C Table E Input = w\$ S = start symbol

repeat { let X be the top stack symbol; /* may be let a be the next input symbol \$ **/ if X is a terminal symbol or \$ then if X = = a then { pop X from the stack; {top of stack } matches imput remove a from input; 3 else ERROR(); }stack symbol and input symbol do not match else /* X is a non-terminal symbol ** / if $M[X, a] = = X \rightarrow Y_2 Y_2 \dots Y_k$ then $\{$ single unique production push Yk, Yk-1, ... Y2 onto stack 3 (Y2 on top)

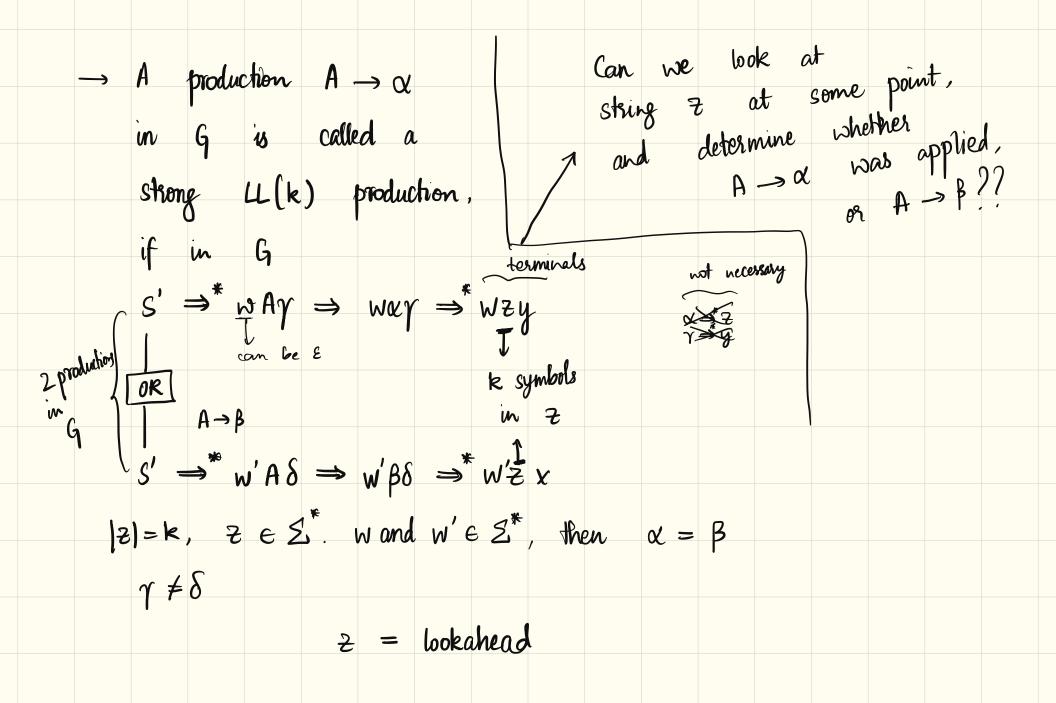
3 until stack has emptied. LL(1) Parsing Table (No slot con have more than 1 entry) Example: Grammar $S' \rightarrow S$ a b C S → aAS | c $S' \rightarrow S$ $S' \rightarrow S$ s' A → ba | SB S $S \rightarrow aAS$ $S \rightarrow c$ $B \rightarrow bA \mid S$ $A \qquad A \rightarrow SB \qquad A \rightarrow ba \qquad A \rightarrow SB$ $B \qquad B \rightarrow S \qquad B \rightarrow bA \qquad B \rightarrow S$ Rows indexed by non-terminals Columns indexed by terminals

Stri	ne :		a	С	Ь	Ь	a	С							
-	0	a			a			a		(C		l	C	
							æ						S		
						A			A				3		
				Ç)		S			S			S		
		s'		ģ	†		ļ	\$		ģ	\$		ģ	þ	
c			Ь			Ь			Ь			Ł	2		
		С						b					Ł	,	
		ß			B		f	t		ŀ	t		l	a	
		S			S		(5		0	S		ļ	>	
		\$		l	¢ Þ		ļ	\$		l.	\$			•	

	a		С			c			\$			stack empty				
	l	ı														
	S		S			с										
	\$			\$			\$			\$						
How	is	41	re	parsi	ing	tabl	2	constr	ucted	. 2						
										0		<u>(</u>				
	LL	(1)	99	amm	ers	\sim	Sn	b cla	ふ	of	U-	Gs				
								Som	ie (resm	TIONS					



-> Consider leftmost derivations only assume grammar has no useless symbols (terminals / non-terminals that cere never used) () not post of any production OR 2) LHS of a such production productions can never and corresponding be reached symbols are useless



Strong U(k) condition: If the lookahead (Z) is some at some point, then we know exactly which production was applied at a point * A grammar (non-terminal) is strong LL (k) if all its productions are strong U(k). $\alpha \gamma \rightarrow \frac{z}{2} y$ $\beta \delta \Rightarrow 2\pi$ forces & and B] strong LL(k) to be same] grammar

e.g: $S \rightarrow Abc | a Acb$ $A \rightarrow \mathcal{E}[b] C$ is a strong LL(1) non-terminal S k=1 $S' \Rightarrow S \Rightarrow Abc \Rightarrow bc \Rightarrow or bbc \Rightarrow or cbc \Rightarrow$ ₩ A->b A->c A→E × z=b z=b z=c $\omega = \varepsilon$ here 1st symbol = lookahead = 2 (k=1) $S' \Rightarrow S \Rightarrow aAcb \Rightarrow acbs or abcbs or accbs$ ¥ A→b A-> C A→E β z = a in all cases

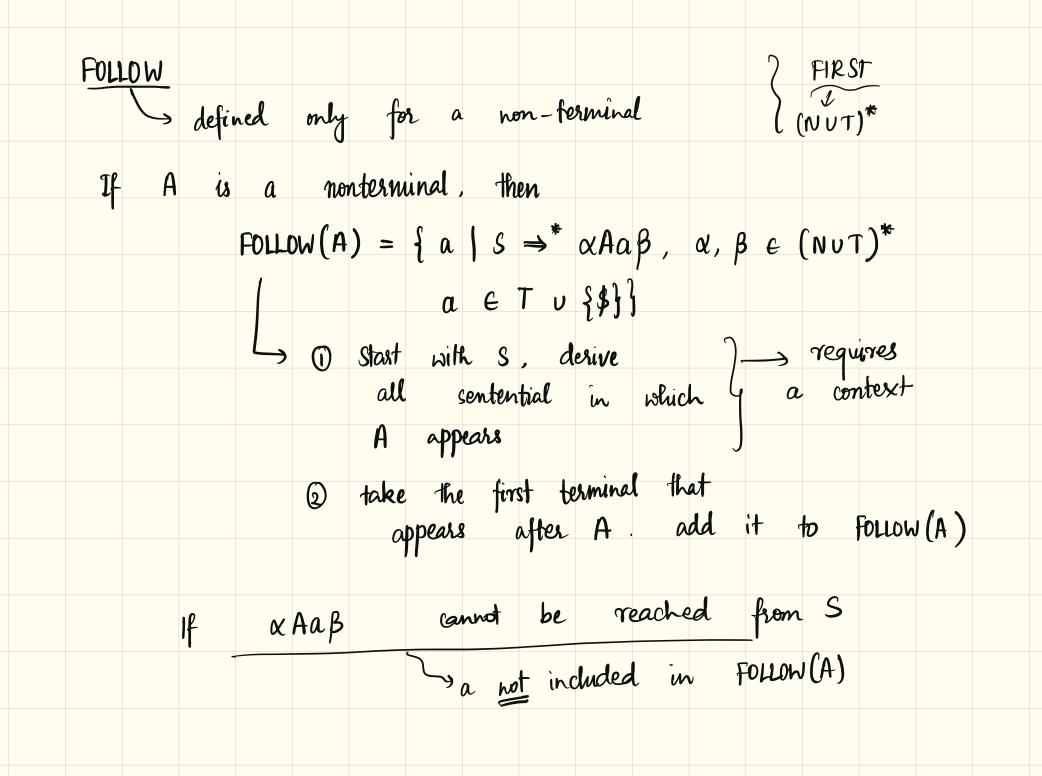
In this case,
$$\omega = \omega' = \varepsilon$$
,
 $\alpha = Abc$
 $\beta = aAcb$
but z is different in the two derivations,
in all the derived strings
 \therefore vacuually true $\rightarrow LL(1)$ Θ
 $S \rightarrow Abc | aAcb] A is NOT strong LL(1)
 $A \rightarrow e|b|c$$

 $S' \Rightarrow Abc\$ \Rightarrow bc\$ A \rightarrow \widetilde{\varepsilon}$ bbc\$ $A \rightarrow \widetilde{b}$ $z = b \left(\begin{array}{c} \rightarrow \\ & \ddots \end{array} \right)$ $z = b \int LL(1)$ $\omega = \varepsilon$ $\omega' = \varepsilon$ cbc \$ Even though the lookaheads are same (z = b), $\alpha \neq \beta$, ... grammar is not strong LL(1). $w = \varepsilon, w' = a$ is not strong LL(2) Α $\begin{array}{c} A \rightarrow \varepsilon \\ A \rightarrow b \end{array} \begin{array}{c} z = bc \\ \end{array}$ $S' \Rightarrow Abc \Rightarrow bc \Rightarrow$ $S' \Rightarrow aAcb \Rightarrow abcb$. A is not LL(2)

strong LL(3) A Ìs bc\$ bbc\$ A bc \$S′ ⇒* all 2 are different vacuously true A→c cbc\$ 5 A -> d Α→β a;cb\$ $S' \Rightarrow * wA\gamma \Rightarrow * wzy$ $S' \Rightarrow * wA\delta \Rightarrow * wzz$ s' ⇒* aAcb\$ ⇒ a'bcb 17 A is $LL(|z|) \begin{cases} same \\ \downarrow \\ u \\ \alpha = \beta \end{cases}$ ajcob if

Testa	ble	Cor	difi e	ns -	or	LL(1)									
								່ຜ	ill w	ot k	pe	consid	ered a	rom	now	
	on			0												
	, , ,					For	look	nheer	5	1						
	We	ak	LL(1) ζ		102	str	ong	5	1 weak						
	str	onz	Шí	1) (for	ott	hers	(LL	(2),	sk	ong ŧ	we	ek)		
				L		U										
The	c	assica	l	cond	ition	fo	S .	LL(1)) þr	operty	14	ses	Firs	T		
			DW			I			l	10						
	next	-	-) (

First
If
$$\alpha$$
 is any string of grammar symbols
 $\alpha \in (N \cup T)^*$
FIRST $(\alpha) = \{ a \mid a \in T \text{ and } \alpha \Rightarrow^* a \alpha, x \in T^* \}$
 $\longrightarrow 0$ collect all (terminal) strings (sentence)
derivable from α
 \emptyset add first symbol of each string to FIRST(α)
By defⁿ : FIRST(ε) = $\{ \varepsilon \}$

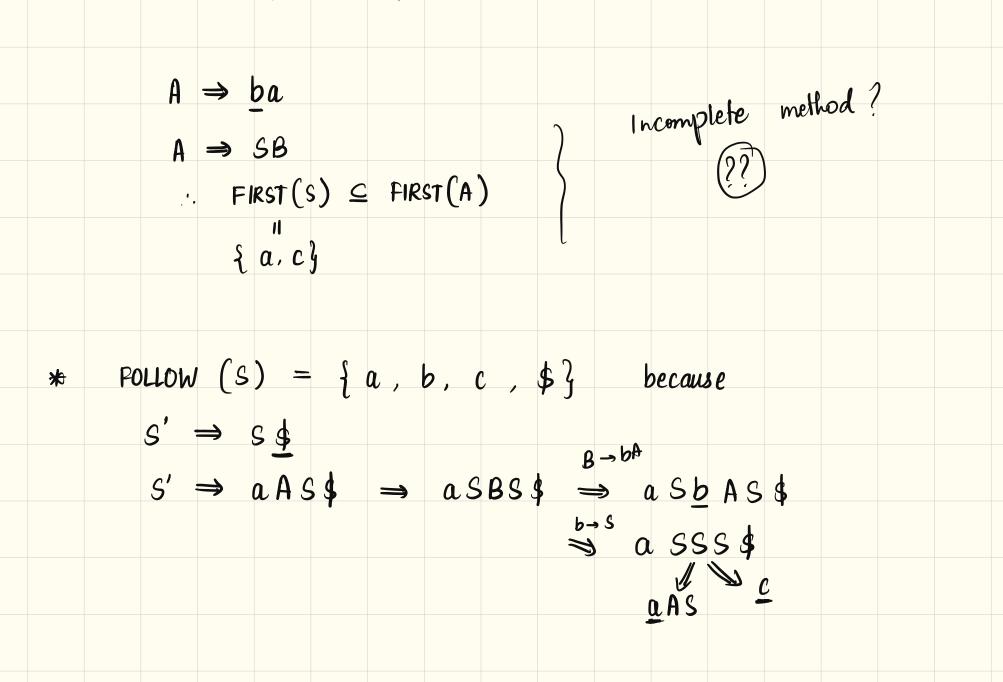


Example:

$$S' \rightarrow S_{4}$$

 $S \rightarrow aAS \mid c$
 $A \rightarrow ba \mid SB$
 $B \rightarrow bA \mid S$
***** FIRST $(S') = FHRST (S) = \{a, c\}$ because
 $S' \Rightarrow S_{4} \Rightarrow c_{4}$
 $S' \Rightarrow S_{4} \Rightarrow c_{5}$
 $S' \Rightarrow S_{4} \Rightarrow c_{5}$
 $S' \Rightarrow S_{4} \Rightarrow c_{5}$
 $NOTE : Do the complete derivation
 $\alpha \Rightarrow^{*} \alpha x, x \in T^{*}$ if terminal
 $\gamma \Rightarrow^{*} \alpha x, x \in T^{*}$ if terminal
 $\gamma \Rightarrow^{*} \alpha x, x \in T^{*}$$

* FIRST (A) = $\{a, b, c\}$ because



* FOLLOW
$$(A) = \{a, c\}$$
 because
 $S' \Rightarrow^* a A S \$ \Rightarrow a A a A S \$$
 $S' \Rightarrow^* a A S \$ \Rightarrow a A c \$$
Algorithms to compute FIRST
 $()$ terminals and non-terminals
 $()$ general string $e(N \cup T)^*$

() Terminals and nonterminals

for each $(a \in T)$ FIRST $(a) = \{a\}$; FIRST $(\mathcal{E}) = \{\mathcal{E}\}$; *for each* $(A \in N)$ FIRST $(A) = \emptyset$; *for initialize for nonterminals*

// fixed point computation : see also -> Ford-Fulkerson Algorithm while (FIRST sets are still changing) { for each production p { Let p be the production A -> X1X2...Xn $FIRST(A) = FIRST(A) \cup (FIRST(X_1) - \{\epsilon\})$ $\| if X_1 \Rightarrow \varepsilon$ could have elements from other production

$$i = 1;$$
while $(\varepsilon \in \text{FIRST}(X_i) \&\& i \leq n-1)$?
FIRST $(A) = \text{FIRST}(A) \cup (\text{FIRST}(X_{i+2}) - \{\varepsilon\});$
 $i++;$
 $// X_1 \rightarrow \varepsilon \rightarrow \text{consider } X_2 \dots X_n$
 $// X_1 X_2 \rightarrow \varepsilon \rightarrow \text{consider } \text{next}$
and so on
if $(i = = n \&\& (\varepsilon \in \text{FIRST}(X_n)) // \text{reached } \text{end}$
 $// No \text{ symbol}$
FIRST $(A) = \text{FIRST}(A) \cup \{\varepsilon\}$
 $// A \Rightarrow \varepsilon$

(2) FIRST(β): β, a string of grammar symbols

{ /* Assume FIRST (terminal), FIRST (non terminal) computed */ $FIRST(\beta) = \phi$ while (FIRST sets are still changing) { Let B be the string X1 X2... Xn $FIRST(\beta) = FIRST(\beta) \cup (FIRST(x_1) - \{\epsilon\});$ $\dot{\iota} = 1$ while $(\mathcal{E} \in FIRST(X_i) \& \& i \le n-1)$ { $FIRST(\beta) = FIRST(\beta) \cup (FIRST(\chi_i) - \{\epsilon\});$ ĺ++ ;

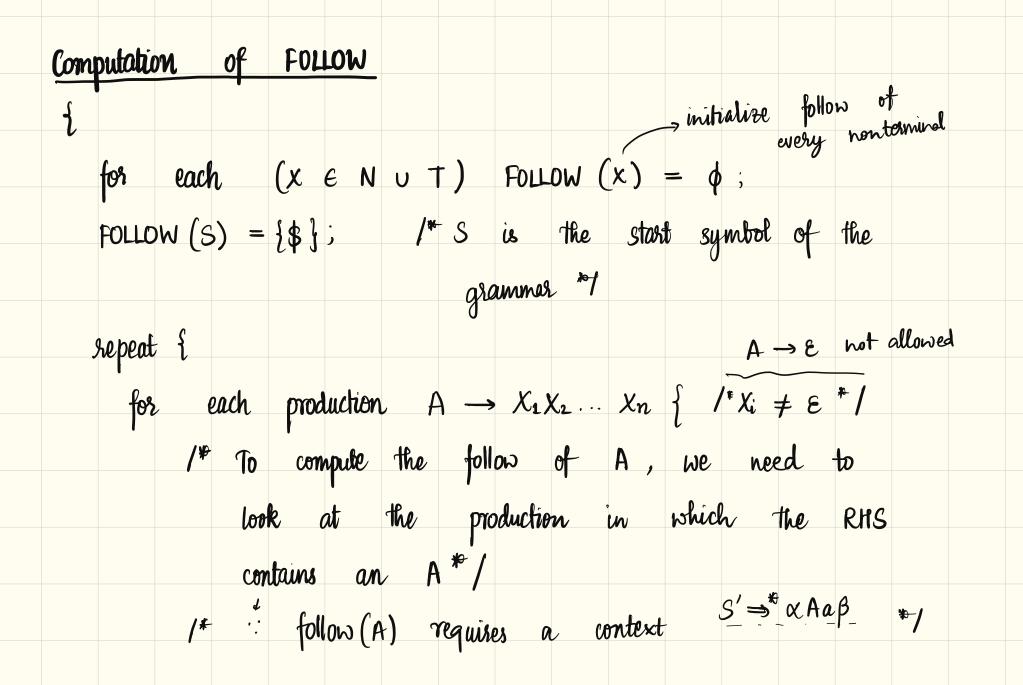
if
$$(i == n \ bk \ (\varepsilon \in First(x_n)))$$

First $(\beta) = First(\beta) \cup \{\varepsilon\}$
3
Example:
 $S' \rightarrow S_{\varphi}$
 $S \rightarrow aAS \mid \varepsilon$
 $A \rightarrow ba \mid SB$
 $B \rightarrow cA \mid S$

Initially: $FIRST(S) = FIRST(A) = FIRST(B) = \phi$

$$\begin{array}{c} \hline \text{Heration 1:} \\ \hline & \text{FIRST (S)} = \{a, \epsilon\} \quad \text{from } S \rightarrow aAS \} \epsilon \\ \hline & \text{FIRST (A)} = \{b\} \cup (\text{FIRST (S)} - \frac{1}{\epsilon}\}) \cup (\frac{\text{FIRST (B)} - \frac{1}{\epsilon}\epsilon\})}{atm} \quad \xrightarrow{because} \\ & = \{b, a\} \quad \xrightarrow{a, \epsilon} \quad \xrightarrow{d} \quad \xrightarrow{d} \quad \xrightarrow{because} \\ & \text{FIRST (B)} = \{c\} \cup (\text{FIRST (S)} - \frac{1}{\epsilon}\epsilon\}) \cup \frac{1}{\epsilon}\epsilon\} \\ & = \{a, c, \epsilon\} \quad \xrightarrow{d} \quad$$

Iteration2(valuesstabilizeanddornotchangeiniteration3)*FIRST(S) =
$$\{a, E\}$$
 (nochangefromiteration1)*FIRST(A) = $\{b\}$ \cup (FIRST(S) - $\{E\}$) \cup (FIRST(B) - $\{E\}$) \cup *FIRST(A) = $\{b\}$ \cup (FIRST(S) - $\{E\}$) \cup (FIRST(B) - $\{E\}$) \cup = $\{b, a, c, E\}$ *FIRST(B) = $\{c, a, E\}$ nochangefromiteration1.



/* symbols which follow A will also follow
$$Xh \stackrel{\#}{}$$

FOLLOW $(Xn) = FOLLOW (Xn) \cup FOLLOW (A);$
from prev
iterations
REST = FOLLOW $(A);$
for $i = n \rightarrow 2$ t
if $(\mathcal{E} \in FIRST(Xi))$ t
FOLLOW $(Xi-1) \cup$
REST = FOLLOW $($

FOLLOW
$$(X_{i-1}) =$$
 FOLLOW $(X_{i-1}) \cup$ FIRST (X_i) ;
REST = FOLLOW (X_{i-1}) ;
}
}
until no FOLLOW set has changed.
Example:
 $S' \rightarrow S_{4}$
 $S \rightarrow aAS | E$
 $A \rightarrow ba | SB$
 $B \rightarrow cA | S$

hitially Follow (S) =
$$\{\$\}$$

Pollow (A) = Pollow (B) = ϕ
FIRST (S) = $\{a, e\}$
FIRST (A) = $\{a, b, c, e\}$
FIRST (B) = $\{a, c, e\}$
Negation 1
* S \rightarrow aAS
Follow (S) $\cup = \{\$\}$;
REST = Follow (S) = $\{\$\}$
Pollow (A) $\cup = (FIRST (S) - \{e\}) \cup REST = \{a, \$\}$

*
$$A \rightarrow SB$$

FOLLOW (B) $v = FOLLOW(A) = \{a, \$\}$
REST = FOLLOW (A) = $\{a, \$\}$
FOLLOW (S) $v = FIRST(B - \{e\}) \cup REST = \{a, c, \$\}$
* $B \rightarrow cA$
FOLLOW (A) $v = FOLLOW(B) = \{a, \$\}$
* $B \rightarrow S$
FOLLOW (S) $U = FOLLOW(B) = \{a, c, \$\}$
iteration 1 : FOLLOW (S) = $\{a, c, \$\}$; FOLLOW (A) = FOLLOW (B) = $\{a, \$\}$

* At the end of iteration 2
POLLOW
$$(5) = FOLLOW (A) = FOLLOW (B) = \{a, c, s\}$$

* FOLLOW sets do not change any further

LL(1) conditions
 \rightarrow based on FIRST and FOLLOW
usby? \rightarrow we want an algorithm
to compute the paising table
 $for \qquad LL(1) \ grammass.$

* Let G be a context - free grammas
* Let G be a context - free grammas
* G is LL(1) iff for every pair of productions

$$A \rightarrow \alpha$$

 $A \rightarrow \beta$,
the following condition holds:
 $dirsymb(\alpha) \cap dirsymb(\beta) = \phi$
 $dirsymb(\gamma) = if (\varepsilon \in first(\gamma)) then$
 α, β
 $((first(\gamma) - f\varepsilon)) \cup follow(A))$
direction symbol else first(γ)

* Equivalent formulation ALSU Dragon book Ali Sethi when Ravi Sethi walks first $(\alpha \cdot \text{follow}(A)) \cap \text{first}(\beta \cdot \text{follow}(A)) = \phi$ set of terminals {βa, βb,... } $\{a, b, c, d\}$ first of $\{\alpha \alpha, \alpha \beta, \dots\}$ same as dirsymb definition for LL(1) grammar, this Given now give an algorithm for constructing We the parsing table

for each production $A \rightarrow \alpha$ for each symbol s c dirsymb(x) /* s may be either a terminal symbol or \$ */ add $A \rightarrow \alpha$ to LLPT [A, S]Make each undefined entry of LLPT as error. OR for each production $A \rightarrow \alpha$ for each terminal symbol a e first (x) add $A \rightarrow \alpha$ to LLPT [A, a]if (E E first(a)) for each terminal symbol b e follow (A) add $A \rightarrow \alpha$ to LLPT [A, b]

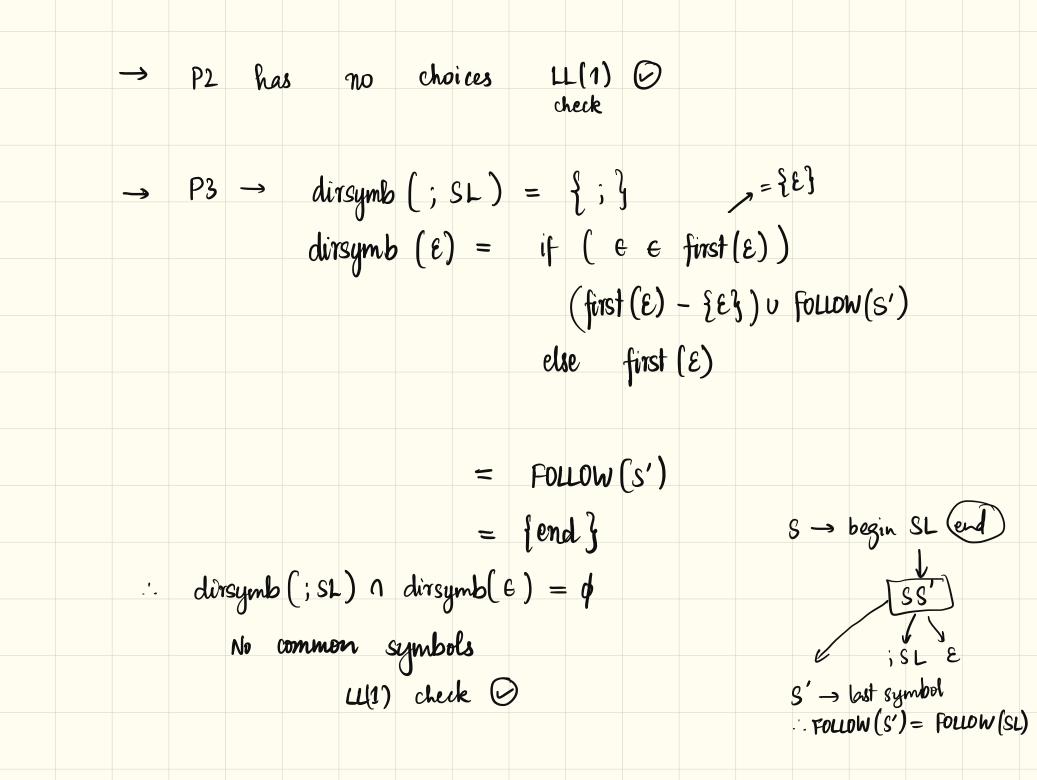
if $\$ \in follow(A)$ add $A \rightarrow \alpha$ to LLPT [A, \$]Make each undefined entry as error. * After the construction of the LL(1) table is complete sing my method if any slot in the , then the grammas is table has (<u>not</u> LL(1) two or more productions

Example :

 $p_1: S \rightarrow if(a)$ else S | while (a) S | begin SL end $P2: SL \rightarrow SS'$ $P3: S' \rightarrow ; SL \mid E$

 $\{if, while, begin, end, a, (,), ; \} \rightarrow all terminal symbols$

→ clearly, all alternatives of P1 start with distinct symbols (if, while, begin) → ∴ no problem LL(1) () check



Hence the grammar is LL(1)