










































Ép2025_ompiles I Week05

FeeGrammas.PeAuomaandPaing
Syntax analysis

Context free grammars
basis of sFfan of
programming languages

Passing CFG
pushdown automata

Passing Topdown LL 1
Recursive descent

Bottom up
LR

tool YACC parser construction













































Grammars
used for precise description of rules

eg
Rules stating how functions are made out

of parameter lists declarations and Igments
expressions etc

Certain types of grammars

parsers can be automatically

constructed from the grammar

Passers Syntax Analysers are generated for a

a particular grammar
input YACC output
grammar parser













































CFG subclass of languages

regular

CFG

context sensitive

type 0 etc

CFGs specify
context free languages

temp

Passes

verifies that the string of tokens for a

program in that language can be generated

from that grammar













































reports syntax errors

construct parse tree representation

atotays

necessary
usually calls lexical analyzer to supply
Tokens when necessary

handwritten or automatically generated

tokens of lexical analyses context
CFG free

Regular

languages
G N T P S

pparser FlexicalAna

ttite
pushdown Finite

time s
as

atom hYa
statemom

setof finite set
non terminals

iIIEEI













































FEE Is FEIL A bAA

B b bs ABB

aÉ 4
E E E E E ids

loosely E E T

productions

Derivations E Ee e id E

Fat
symbol E id

depends on

which production to choose
whdBasive Émq ng

it it













































Short E id id

E GivÑˢ id id

contefE.EE
TeredmCFLsL
G w we and s w

all strings derivable from start symbol and

consist only of terminals













































S 050 L G palindromes over 0 and 1

S 151

s 1

s e

sententialfgh e nut

is a sentential form if S α

sentence only terminals

G2 L GI LG2













































Derivation Tree

examples AAS a

A SbA SS ba

leaves terminals

non terminals internal
nodes

I

S AAS asbAS aabAS aabbas

qf fderivationfree













































Leftpostandrightpostderivations
expandexpand

leftmost rightmost

non terminalnon terminal

first in first in

each step each step

if some w E LG has more than one

EIGisambiguous

AAT.itEcgLtandrgh
derivations

ambiguous inherently ambigous language













































AmbigousGrammars
If the grammar is ambiguous

tools for generating
parsers and passing

2 parse trees techniques will be

for same
grammar

same in trouble

word

E E E E E E id 7
and

have same

precedence

same language

E E T T
has more

precedence than
T T F F

F E id













































ExampleI id id id

E E E EXE E id

E

I
1












Equivalent Unambiguous Grammar E E T T

T T F F
id id id

F E lid

I
1 1 I
I

Did
leftmost derivation unique

E E T T F T id T id T F id F F id id f
idLid id



Trying Leftmost derivation

first

E T T F F F E F E T F

J
go to T F

E
id F F Lid T F F T F

id id F id id id



AmbiguityExample

strut IF expr start IF expr start ELSE start other_start

ambiguous

stmt IF expr stint IF expr matched start ELSE start

matched_stunt IF expr matched start ELSE

matched start other_stint

equivalent
unambiguous example later

No algorithm exists to convert ambiguous grammars to
unambiguous



L a b cmdm I n m 1 v anbmcmdnln.mx 1

inherently ambiguous

no grammar that

ampist.FI
aeteesfrthsntneIFe1IFe2S1

ELSE 52



t

I to
inner if



1179

t



s IF e s IF e ms ELSE S

MS IF e MS ELSE ms other S
or

StG
ms

matched statement

I cannot always generates
generate

an if then elseit Hmm
matched statement

Eat

It

e

Tanguy

1 I



Fragment of C grammar Expressions

logical or expr logical and exp

logical or expr OR OP logical and

1

or is
AND isprecedence

level
at lower at higher

level

logical and expr equality expr
logical and expr AND OP equality

expression



lower priority higher priority
lowerpriority operation higher

priority

PushdownAutomat
Machine can be automatically derived with a given
stack based system grammar

PDA M Q E T d go Zo F

input stack of
finite set it

alphabet alphabet
transition Istartstartfiel

states for
state symbol

states

Ttack F EQ



8 Qx E T P Qx

can be E

o q a z 91 f 92 v2 qm rm

syst topof
stack Trenteranlyfthe
symbol states gi and replace

the symbol z by

msn.at
sic4 control

stack



leftmost symbol of ri will be new top

of stack

ri abing
new top

LCM language accepted by M by final

fast jokingthat pseriesof
moves

LCM w go w Zo F p E r

for some p e F and re



NCM language accepted by M byemptystack
F becomes irrelevant
we usually set F

here

NCM w go W Zo p E E for some

p
e Q

Part 2

reverse

L wwR w a b

non deterministically guess middle of input



1ffii.IE aii
P

same set of
languages

But

NPDA is more powerful than DPDA

x

wwR 3

wear
can be recognized by DPDA



In practice we need DPDA since they have exactly
one possible more at any instant

Our passers all are DPDA

PYIIng is the

proctrucigapaeteeforapten.eegenerated by a given grammar

using a DPDA

some actions



no restrictions on language and the form of
grammar parsers for CFLs require 01m

time n length of the strong parsed

CYK algorithm
DP

Earley's algo

subsets.it tfL on time

in these
Predictive parsing

on class
of grammars
called 22 1

Shift Reduce parsing
tues

grammars
topdownusity LR 1 grammars parsing

bottom up



11t.atYaceYhImETlraion of re

string while constructing the parse tree

consider acbbac
s aAS a

Leftmost derivation
A ba SB

B bA 1s s aAs asks acBs acbas

1 2 3 4 I 5

acbbas 6

H
acbbac a



start from the start symbol predicts the next

production used in the derivationts through
parse tables
stored

Next production to be used in the derivation

is determined using the next input symbol to

lookup the passing table look ahead symbol

ensures

Restriction on the grammar
no slot in the

that helps us get parsing table
contains

n time more than one

fmtEethanone
weadd which

to use we



Parse table construction

if two productions become eligible

to be placed in the same

slot
grammar is declared

unfit for predictive
parsing

IL11pasingath.hn
initial configurationInput

stack S
file marker

input up
endof

S start symbol



repeat

let X be the top stack symbol
let a be the next input symbol

may be

1

if x is a terminal symbol or then

if X a then top of stack

pop from the stack
mtches input

remove a from input
else ERROR stack symbol and input symbol

do not match

else X is a non terminal symbol

if M X a X Y Y Yr then

pop from stack
single unique
production push YR Yr 1 Ya onto stack

42 on top



until stack has emptied

construction

Example lates

Grammar LL 1 Passing Table

S 5 No slot can have more than 1entry

s aAs c a b c

A ba SB s s 5 s s

B bA Is 5 s aAs s c

A A SB A ba A SB

B B S B bA B 5

Rows indexed by non terminals

Columers indexed by terminals



string a c b b a c

a a a c c

a S

A A B

s s s s

s

c b b b b

c b b

B B A A a

S S S S S



a c c
stack empty

a

S S C

How is the parsing table constructed

LLC grammars
subclass of CFGs

some restrictions



1iatgIT.tt be a
Input is extended with k EOF symbols

k lookahead of the grammar

k 1 allowed to see 1 symbol at a

time

k 2 allowed to see 2 symbols at a

time

New non terminal s and production S s
k



Consider leftmost derivations only
assume grammar has mail.lamntttaminas

that are.am pa f
any production

OR

LHS of a
such production
productions can never

aggynagggberal



Can we look at
A production A α

spring z at some point
in G is called a determine

whether

A α was applied

or A β

if in G

strong UK Prod ly

dIII
IoM

s WAY way Wzy

m

Ian be E
zproduction k symbols

ing 1 A β in Z

S WAS Wipo W'E x

1z1 k z e Ʃ wand w e Ʃ then α β

res
z lookahead



strong LL k condition If the lookahead Z is same

at some point then we know exactly which production was

applied at a point

A grammar non terminal is strong LL k if all its

productions aretongUCR

xp zy
so 11

forces α and β strong LL k

to be same grammar



e.g S Abc a Acb

A E b c

S is a strong LL 1 non terminal

k 1

S 5 A be or bbc or Cbc
ASE A b A C

Z b z b z C

W E here

1ˢᵗ symbol lookahead

s 5

afb
acb or abcb or accb

É qa
cases



In this case W W E

α Abc

β aAcb

but z is different in the two derivations

yinallthederivedstringsi.vacous.ly
true LL 1

s Abc aAcb A is Not strong LL 2

A elble



s Abc bc A z b

bbc A 5 2 5 I
cbc w̅

Even though the lookahead are same z b

α β grammar is not strong LL 2

A is not strong LL 2 w E w a

5 Abc be A E

s aAcb abeb A b

2



A is strong LL3

DES
s Abc

a egg all z are different

AI Tbc vacuouslyytn.ae

app piano
s aAcb was

wjzna bct
same

aject if A is LLCIZ1

βnonterminal






















































