

$$\begin{cases} S[i][1] = 1 + \max_{j \le i} \{S[j][1] : A[j] < A[i] \} \\ 0(n) \\ S[i][2] = j \quad such \quad that \quad A[j] < A[i] \quad and \\ S[j][1] + 1 = S[i][1] \\ 0(n) \\ S[i][2] = j \quad such \quad that \quad S[i][1] + 1 = S[i][1] \\ S[i][2] = j \quad such \quad S[i][2] \\ S[i][2] \\ S[i][2] = j \quad such \quad S[i][2] \\ S[i][$$

cometer is the use of all this in real world? Erdös ----- Ramsay number Exercises Q. O-1 knapsack. n items, every item is a tuple value weight $\begin{pmatrix} 1 \\ (v_1, 19_2) \end{pmatrix}$, $\begin{pmatrix} v_2, w_2 \end{pmatrix}$, ... item 1 item 2 (Un, Wn) item n

Thief who has a bag of capocity W. What is
the maximum value of goods possible.
DP algo with numing time
$$O(n W)$$
.
Input size = log ve + ...
+ log We
Sorting : n numbers, largest k $\xrightarrow{}$ input size
 $Sorting : n numbers, largest k $\xrightarrow{}$ input size
 $M = O(n^2 \dots)$ to compare
two numbers$

$$A[i][w] = max \left\{ A[i-1][w-u_{3}i] + v_{i}, A[i-1][w] \right\}$$

$$is in the item
is on the
solution
$$Solution = 0(n)$$

$$h = 0(n)$$

$$h = 1(n/2)$$

$$h = 1(n/2)$$$$

* eccentricity

* diametes

2? How much time to convert b/w adjacency list and adjacency matrix ? Adjacency List Adjacency Matsix $0(n^2)$ |list(v)| = deg(v)Checking for adjacencies 🕖 $\sum_{v \in V} \deg(v) = 2|E|$ $\Theta(|V| + |E|)$ - Accessing the neighbours 🕗

See slides

undiscovered	(white)
discovered	(gray)
explored	(black
	yellow in shides

- Time Complexity: O(IVI + IEI)

- Algorithm
 Printing the path

