

Greedy approach: pick a length meximizing price length Dynamic Programming: 1) Identify subproblems to be solved Develop a remarence relation for each subproblem 3 Solve using bottom up approach / tabulate (4) Backtrack (\mathbf{i}) For i=1 to R(i) = max price that can be obtained by breaking and selling a piece of length i

Length	2	ર	4	S	6	7	8	9	10	i					
Price	5	8	9	10	17	17	20	24	30	P(i)					
		R(1) = ·	1											
		R(2	L) =	Max	: (P((2),	P(1)	+ P((1)						
			1	5	C										
		•													
		•													
		R(1	v) =	= ma	x (P(10)	, P(1)+	r(9)	, P (2	2) +	R(8)	,)		
					C		J L) (
						1	or 2	ñ	3 81		9				
1						1		1	1			1			

$$R(1) = 1$$

$$R(2) = 5$$

$$R(3) = \max \{ 8, P(1) + R(2) \}$$

$$= 8$$

$$R(4) = \max \{ 9, P(1) + R(3), P(2) + R(2), P(3) + R(1) \}$$

$$= \max \{ 9, 9, 10, 8 + 1 \}$$

$$= 10$$

$$R(5) = \max \{ P(5), P(1) + R(4), P(2) + R(3), P(3) + R(2) \}$$

$$= \max \{ 10, 11, 13, 13 \}$$

$$= 13$$

		R(6)		= १	nax	{ρ	(6)	ρ(1) +	R[5),	P(2) +	R(4),			
						-				P(3)	+	R (3) Y				
				=	max	۲ ۲	, 1	4,1	5, 1	و ک						
				11	ነጉ											
		R (7) -	=												
			-													
	P(ì)	I	5	8	٩	D	17	17	20	24	30					
	R(i)	1	5	8	ol	13	17	18	22	25	30					
	J(ì)	I	2	3	2	2	6	I	2	ર	10					
					1				1					1	1	

our last step was at i Suppose last step П 2 $R(n) = \min \left(P_{1,n}, \min \left(R(i) + P_{i,n} \right) \right)$ ì ≤ n-1 Running time $O(n^2)$ Rij = min cost of travel from i to j. For ì<j

 $R_{i,j} = \min \left\{ P(i,j), \min \begin{array}{c} P(i,k) + R(k,j) \\ i < k < j \end{array} \right\}$ 1: R(1,2), R(2,3), ..., R(n-1, n)2: R(1,3), R(2,4), ... min (P(1,3), R(1,2) + R(2,3))thow to find subproblems? I/P: A[1], A[2], ..., A[n] O/P : f(A[1], ..., A[n])

Subproblems : \rightarrow find f(A[1], A[i]) \rightarrow Find $f(A[i], \ldots, A[j])$ * Similarity in strings (DNA strings) $\rightarrow \text{ thow two define similarity } ?$ $\rightarrow \text{ String alignment : } G C A G T C T G$ $not a good G C G T C T G \rightarrow \text{ shift}$ method (shift changes answer)

→	edit	dist	ance									Spellch	eck	yay_	
	Given	l tr	D	string	8	how	M	my	steps	ฉร	e				
	neede	rol -	to	get	fo	SECO	nd	U	oper	ations					
	star	y	from	fi	rst.										
ED	(at	ARS,	RE	ADS)) =	2									
						,									
\bigcirc	(С	L	E	A	R	S								
		R	L	E	A	R	S								
		R	E	A	R	S									
3	ſ	R	E	A	D	ς									

ED (ACCTGCAA, CTGCAAG) $\begin{array}{c|cccccc} A & C & C & T & G & C & A & A \\ \hline \textcircled{O} & (& T & G & C & A & A & \\ \hline \textcircled{O} & (& T & G & C & A & A & \\ \hline \textcircled{O} & (& T & G & C & A & A & G & \\ \hline \end{array}$ Α $ED(\ell, GACCT) = 5$

S_1 : TACCGA S_2 : ACCG

Step 2: Recurrence

S1:TACCGCA S2: ACCGTAC

100 100

ED(TAC, ACC)=ED(TA,AC)

ED(TACCGC, ACCGT)=1+Min{ ED(TACCGC, ACCG), ED(TACCG,ACCGT) ED(TACCG,ACCG)

Step 3 : Tabular computation C C Α 3 T 3 EO(1-1, j-1) EO(1-1,j) A ED(1;j-1) ED(1;j) С С T ED(i,j) = 1 + min(ED(i-1,j), ED(i,j-1), ED(i-1,j-1))4: Traceback Step

Hon	new	ork

1. Step 1 : Formulation :

(a) Problem we want to solve : maximize the number of activities that I can participate
 given the constraint that I cannot participate
 on two consecutive days

(b) Recursion

else if (playing
$$[n-3]$$
 & act $[n-1] + \alpha > act [n]$)
playing $[n - 1]$
playing $[n]$
playing $[n+1]$
max $[n+1] = max [n] - act [n] + act [n-1]$
 $+ \alpha$
 \rightarrow Convoluted logic \longrightarrow bad