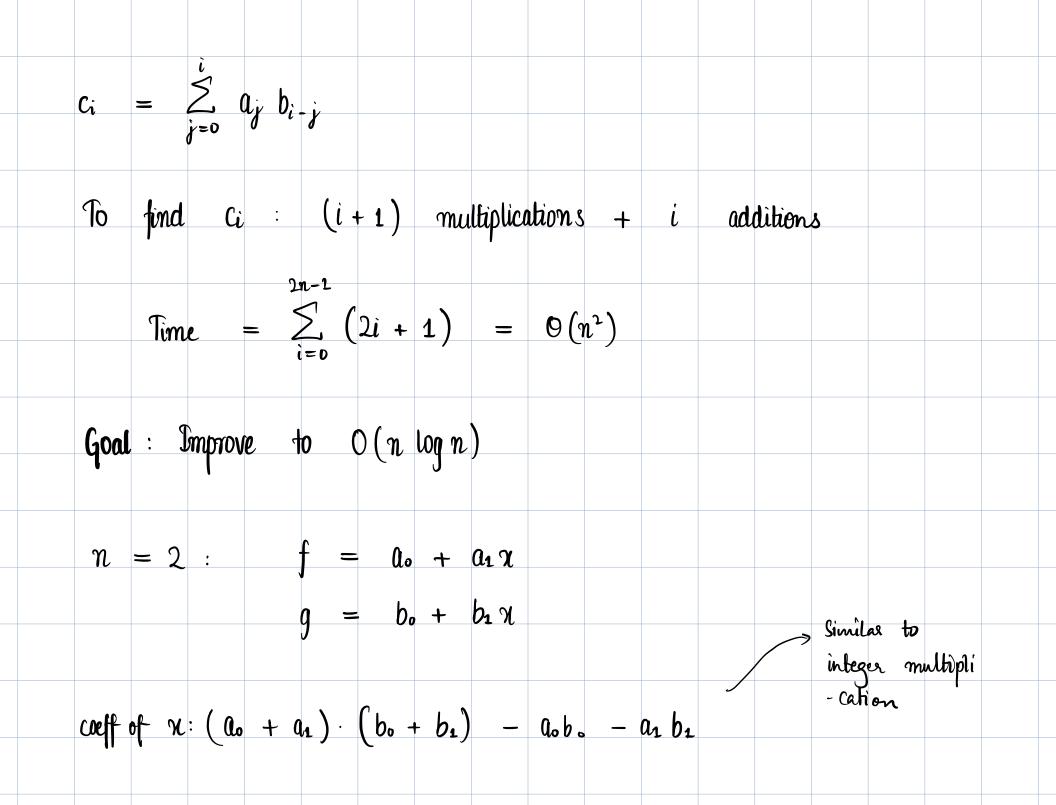


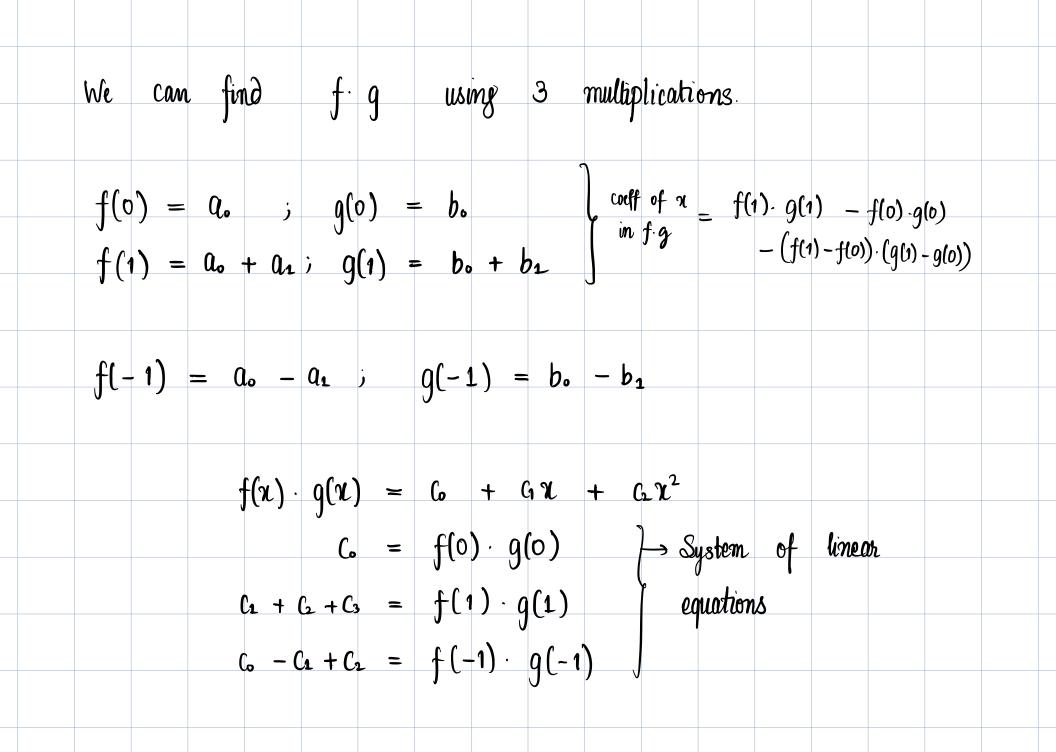
Running time: If the imput consists of a strings, each of length k, then running time = O(kn) Numbers If input consists of a strings, each of a digits in base b, then sum time = O(d(b+n))d phaseses: cach phase: count sort of n numbers in 0,..., b-1

Sorting n numbers in $\{1, ..., n^2\}$ in O(n) time each number in base n # digits = 2 Applying radix sort: O(2(n+n)) = O(n) $\chi \in \{1, ..., n^2\} = (a, b)$ Can be written as $\gamma = \alpha n + b,$ $a \leq n$ $0 \leq b \leq n - 1$

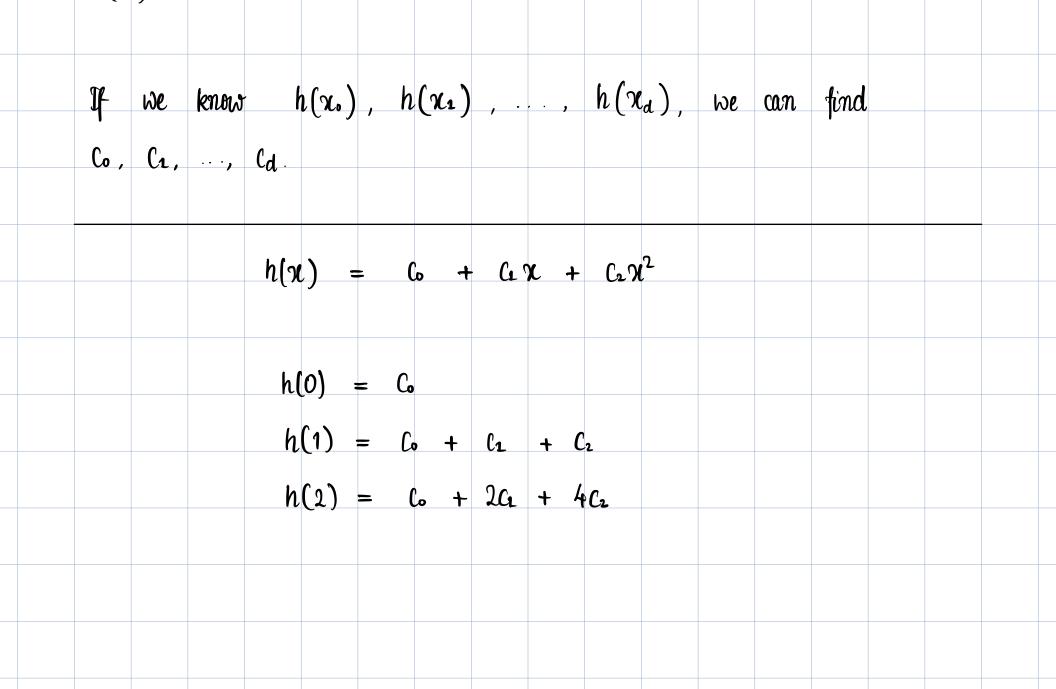
Solutions
6. Counting inversions
30 Jan 2025
Polynomial Multiplication

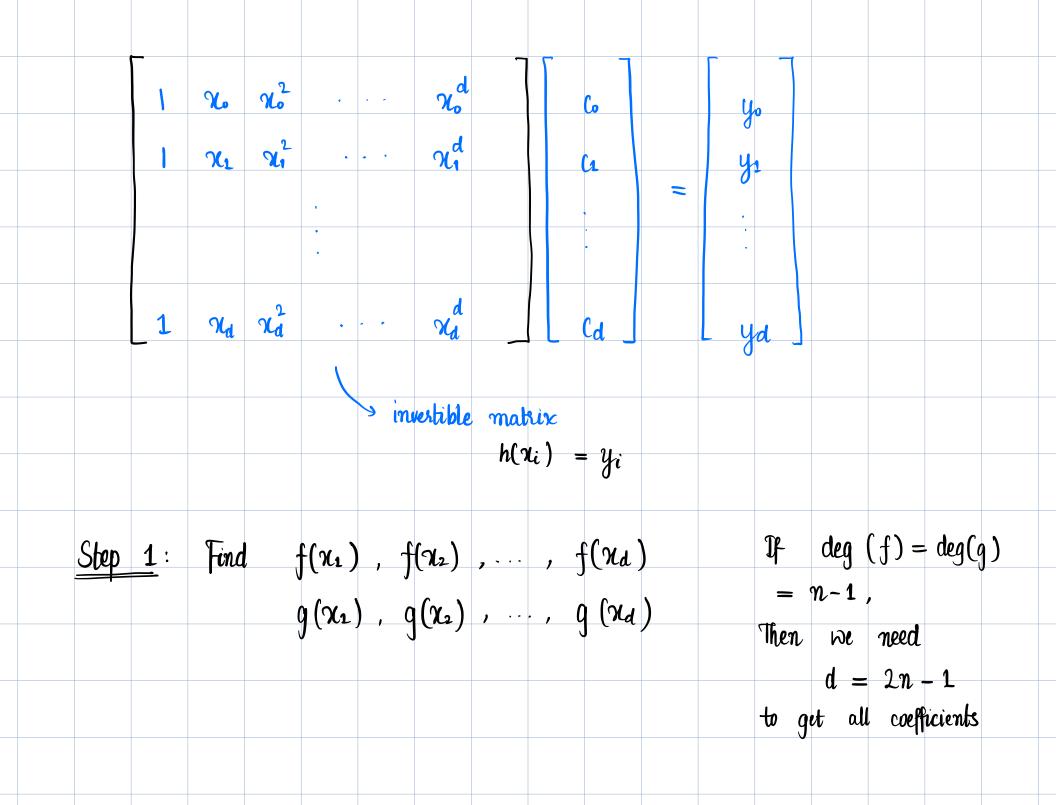
$$1/\rho$$
: $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$
 $g(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}$
 $f: [a_0, a_1, \dots, a_{n-1}]$
 $O/\rho: f(x) \cdot g(x) = \sum_{i=0}^{2n-2} c_i x^i$



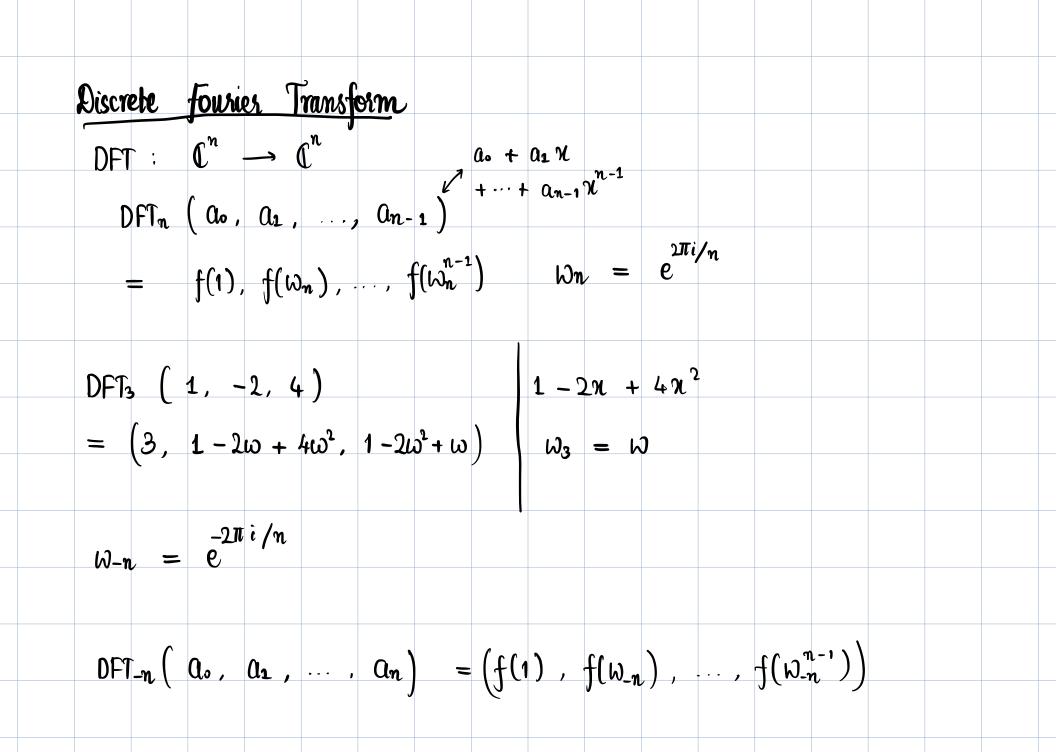


$h(x) = c_0 + c_1 x + \cdots + c_d x^d$



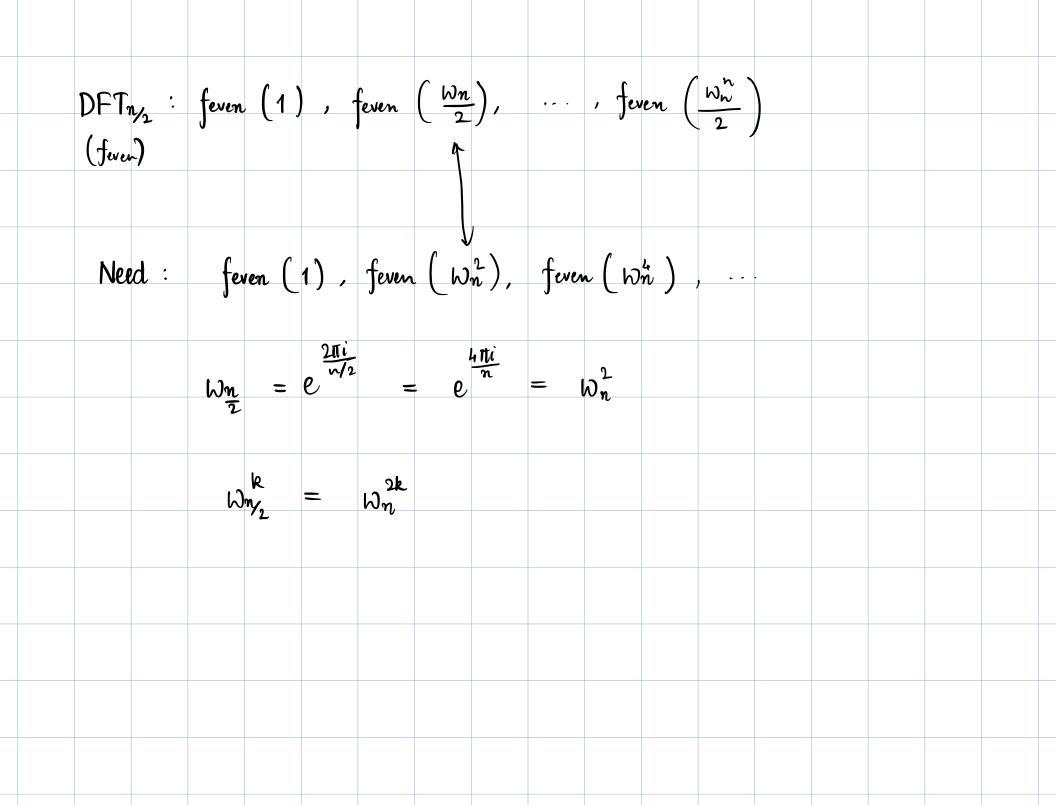


Step 2: Find $f(x_1) \cdot q(x_2) \cdot q(x_2), \ldots, f(x_d) \cdot g(x_d)$ To find $f(x_1) \rightarrow O(n)$ time (??)- $\rightarrow a_0 + a_1 \chi + a_2 \chi^2$ $a_{0} + \chi(a_{1} + \chi(a_{2}))$ \uparrow Step 1 : $O(n^2)$ Step 2 : 0(n) $a_0 + a_1 \chi + a_2 \chi^2 + a_3 \chi^3$ $a_{\circ} + \chi (a_{1} + \chi (a_{2} + \chi (a_{3})))$



If $DFTn(a_0, a_1, \ldots, a_{n-1}) = (b_0, b_1, \ldots, b_{n-1})$ then $\frac{1}{n}$ DFT_n $(b_0, b_1, \dots, b_{n-1}) = (a_0, a_1, \dots, a_{n-1})$ * We can find DFIn (ao, ..., an-1) in O(n log n) time. $f(\chi) = \alpha_0 + \alpha_1 \chi + \cdots + \alpha_{n-1} \chi^{n-1}$ $= (a_{0} + a_{2} \chi^{2} + a_{4} \chi^{4} + \dots) + \chi (a_{1} + a_{3} \chi^{2} + a_{5} \chi^{4} + \dots)$

 $f(x) = feven(x) + x \cdot fodd(x)$ feven $(y) = a_0 + a_2 y + a_4 y^2 + \cdots$ degrees 5 m/2 fodd $(y) = a_1 + a_3 y + a_5 y^2 + \cdots$ f(1), $f(\omega_n)$, $f(\omega_n^2)$, ..., $f(\omega_n^{n-2})$ $f(x) = feven(x^2) + x \cdot f_{odd}(x^2)$ Recursively find DFTn/2 (feven), DFTn/2 (fodd)



Given
$$f$$
 of degree $n-1$,
 \bigcirc recursively find DFT m_2 (feven), DFT m_2 (fodd),
 $\frac{m_2}{2}$
 \bigcirc Find DFT n (f) using n additions
 $T(n) = T(n/2) + O(n)$
 $T(n) = O(n \log n)$
Fast fourier Transform \rightarrow name of the algorithm to find DFT

$$f(x) = 1 + x + 2x^{2} - 4x^{3}$$

$$g(x) = 2 - 3x + x^{2} + x^{3}$$

$$f(1), f(w_{8}^{1}), f(w_{8}^{2}), \dots, f(w_{8}^{3})$$

$$f(1), g(w_{8}^{1}), g(w_{8}^{2}), \dots, g(w_{8}^{3})$$

$$g(1), g(w_{8}^{1}), g(w_{8}^{2}), \dots, g(w_{8}^{3})$$

$$h(x) = f(x) \cdot g(x)$$

$$f(x) = h(1), h(w_{8}^{1}), h(w_{8}^{1}), \dots, h(w_{8}^{3})$$

Coefficients of $h(x) = \frac{1}{8} DFT_8 \left[h(1), h(w_8^1), \dots, h(w_8^7) \right]$